
Introduction
to Deep Learning
Using R

A Step-by-Step Guide to
Learning and Implementing
Deep Learning Models Using R
—
Taweh Beysolow II

Introduction to Deep
Learning Using R

A Step-by-Step Guide to
Learning and Implementing

Deep Learning Models Using R

Taweh Beysolow II

Introduction to Deep Learning Using R

Taweh Beysolow II 				
San Francisco, California, USA			

ISBN-13 (pbk): 978-1-4842-2733-6		 ISBN-13 (electronic): 978-1-4842-2734-3
DOI 10.1007/978-1-4842-2734-3

Library of Congress Control Number: 2017947908

Copyright © 2017 by Taweh Beysolow II

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Technical Reviewer: Somil Asthana
Coordinating Editor: Sanchita Mandal
Copy Editor: Corbin Collins
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference
our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at the following link:

https://github.com/TawehBeysolowII/AnIntroductionToDeepLearning.

For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
https://github.com/TawehBeysolowII/AnIntroductionToDeepLearning
http://www.apress.com/source-code

iii

Contents at a Glance

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

Introduction��� xix

■■Chapter 1: Introduction to Deep Learning��������������������������������������� 1

■■Chapter 2: Mathematical Review�� 11

■■Chapter 3: A Review of Optimization and Machine Learning�������� 45

■■Chapter 4: Single and Multilayer Perceptron Models�������������������� 89

■■Chapter 5: Convolutional Neural Networks (CNNs)���������������������� 101

■■Chapter 6: Recurrent Neural Networks (RNNs)��������������������������� 113

■■�Chapter 7: Autoencoders, Restricted Boltzmann Machines,
and Deep Belief Networks��� 125

■■Chapter 8: Experimental Design and Heuristics�������������������������� 137

■■Chapter 9: Hardware and Software Suggestions������������������������� 167

■■Chapter 10: Machine Learning Example Problems���������������������� 171

■■Chapter 11: Deep Learning and Other Example Problems����������� 195

■■Chapter 12: Closing Statements�� 219

Index��� 221

v

Contents

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

Introduction��� xix

■■Chapter 1: Introduction to Deep Learning��������������������������������������� 1

Deep Learning Models��� 3

Single Layer Perceptron Model (SLP)�� 3

Multilayer Perceptron Model (MLP)��� 4

Convolutional Neural Networks (CNNs)��� 5

Recurrent Neural Networks (RNNs)��� 5

Restricted Boltzmann Machines (RBMs)��� 6

Deep Belief Networks (DBNs)�� 6

Other Topics Discussed�� 7

Experimental Design�� 7

Feature Selection��� 7

Applied Machine Learning and Deep Learning�� 7

History of Deep Learning��� 7

Summary�� 9

■■Chapter 2: Mathematical Review�� 11

Statistical Concepts��� 11

Probability�� 11

And vs. Or�� 12

﻿ ■ Contents

vi

Bayes’ Theorem��� 14

Random Variables�� 14

Variance��� 15

Standard Deviation�� 16

Coefficient of Determination (R Squared)�� 17

Mean Squared Error (MSE)�� 17

Linear Algebra�� 17

Scalars and Vectors��� 17

Properties of Vectors��� 18

Axioms��� 19

Subspaces��� 20

Matrices��� 20

Summary�� 43

■■Chapter 3: A Review of Optimization and Machine Learning�������� 45

Unconstrained Optimization��� 45

Local Minimizers��� 47

Global Minimizers�� 47

Conditions for Local Minimizers�� 48

Neighborhoods��� 49

Interior and Boundary Points��� 50

Machine Learning Methods: Supervised Learning��������������������������������� 50

History of Machine Learning�� 50

What Is an Algorithm?��� 51

Regression Models��� 51

Linear Regression�� 51

Choosing An Appropriate Learning Rate��� 55

Newton’s Method��� 60

Levenberg-Marquardt Heuristic��� 61

﻿ ■ Contents

vii

What Is Multicollinearity?��� 62

Testing for Multicollinearity�� 62

Variance Inflation Factor (VIF)�� 62

Ridge Regression��� 62

Least Absolute Shrinkage and Selection Operator (LASSO)������������������������������������ 63

Comparing Ridge Regression and LASSO�� 64

Evaluating Regression Models�� 64

Receiver Operating Characteristic (ROC) Curve��� 67

Confusion Matrix��� 68

Limitations to Logistic Regression��� 69

Support Vector Machine (SVM)�� 70

Sub-Gradient Method Applied to SVMs�� 72

Extensions of Support Vector Machines�� 73

Limitations Associated with SVMs��� 73

Machine Learning Methods: Unsupervised Learning����������������������������� 74

K-Means Clustering��� 74

Assignment Step��� 74

Update Step��� 75

Limitations of K-Means Clustering�� 75

Expectation Maximization (EM) Algorithm�� 76

Expectation Step�� 77

Maximization Step��� 77

Decision Tree Learning��� 78

Classification Trees�� 79

Regression Trees��� 80

Limitations of Decision Trees��� 81

Ensemble Methods and Other Heuristics��� 82

Gradient Boosting�� 82

Gradient Boosting Algorithm�� 82

﻿ ■ Contents

viii

Random Forest�� 83

Limitations to Random Forests�� 83

Bayesian Learning�� 83

Naïve Bayes Classifier��� 84

Limitations Associated with Bayesian Classifiers�� 84

Final Comments on Tuning Machine Learning Algorithms��������������������������������������� 85

Reinforcement Learning��� 86

Summary�� 87

■■Chapter 4: Single and Multilayer Perceptron Models�������������������� 89

Single Layer Perceptron (SLP) Model��� 89

Training the Perceptron Model�� 90

Widrow-Hoff (WH) Algorithm��� 90

Limitations of Single Perceptron Models��� 91

Summary Statistics��� 94

Multi-Layer Perceptron (MLP) Model�� 94

Converging upon a Global Optimum�� 95

Back-propagation Algorithm for MLP Models:��� 95

Limitations and Considerations for MLP Models��� 97

How Many Hidden Layers to Use and How Many Neurons Are in It������������������������� 99

Summary�� 100

■■Chapter 5: Convolutional Neural Networks (CNNs)���������������������� 101

Structure and Properties of CNNs�� 101

Components of CNN Architectures��� 103

Convolutional Layer��� 103

Pooling Layer��� 105

Rectified Linear Units (ReLU) Layer��� 106

Fully Connected (FC) Layer�� 106

Loss Layer��� 107

﻿ ■ Contents

ix

Tuning Parameters��� 108

Notable CNN Architectures��� 108

Regularization�� 111

Summary�� 112

■■Chapter 6: Recurrent Neural Networks (RNNs)��������������������������� 113

Fully Recurrent Networks��� 113

Training RNNs with Back-Propagation Through Time (BPPT)��������������� 114

Elman Neural Networks�� 115

Neural History Compressor�� 116

Long Short-Term Memory (LSTM)�� 116

Traditional LSTM��� 118

Training LSTMs��� 118

Structural Damping Within RNNs��� 119

Tuning Parameter Update Algorithm�� 119

Practical Example of RNN: Pattern Detection��������������������������������������� 120

Summary�� 124

■■�Chapter 7: Autoencoders, Restricted Boltzmann Machines,
and Deep Belief Networks��� 125

Autoencoders��� 125

Linear Autoencoders vs. Principal Components Analysis (PCA)����������� 126

Restricted Boltzmann Machines��� 127

Contrastive Divergence (CD) Learning�� 129

Momentum Within RBMs�� 132

Weight Decay��� 133

Sparsity�� 133

No. and Type Hidden Units��� 133

﻿ ■ Contents

x

Deep Belief Networks (DBNs)��� 134

Fast Learning Algorithm (Hinton and Osindero 2006)�������������������������� 135

Algorithm Steps��� 136

Summary�� 136

■■Chapter 8: Experimental Design and Heuristics�������������������������� 137

Analysis of Variance (ANOVA)��� 137

One-Way ANOVA�� 137

Two-Way (Multiple-Way) ANOVA�� 137

Mixed-Design ANOVA��� 138

Multivariate ANOVA (MANOVA)��� 138

F-Statistic and F-Distribution��� 138

Fisher’s Principles��� 144

Plackett-Burman Designs�� 146

Space Filling��� 147

Full Factorial��� 147

Halton, Faure, and Sobol Sequences�� 148

A/B Testing��� 148

Simple Two-Sample A/B Test��� 149

Beta-Binomial Hierarchical Model for A/B Testing��� 149

Feature/Variable Selection Techniques�� 151

Backwards and Forward Selection�� 151

Principal Component Analysis (PCA)�� 152

Factor Analysis�� 154

Limitations of Factor Analysis�� 155

Handling Categorical Data�� 155

Encoding Factor Levels��� 156

Categorical Label Problems: Too Numerous Levels��� 156

Canonical Correlation Analysis (CCA)��� 156

﻿ ■ Contents

xi

Wrappers, Filters, and Embedded (WFE) Algorithms���������������������������� 157

Relief Algorithm��� 157

Other Local Search Methods�� 157

Hill Climbing Search Methods��� 158

Genetic Algorithms (GAs)��� 158

Simulated Annealing (SA)�� 159

Ant Colony Optimization (ACO)��� 159

Variable Neighborhood Search (VNS)�� 160

Reactive Search Optimization (RSO)�� 161

Reactive Prohibitions��� 162

Fixed Tabu Search��� 163

Reactive Tabu Search (RTS)��� 164

WalkSAT Algorithm�� 165

K-Nearest Neighbors (KNN)��� 165

Summary�� 166

■■Chapter 9: Hardware and Software Suggestions������������������������� 167

Processing Data with Standard Hardware��� 167

Solid State Drives and Hard Drive Disks (HDD)������������������������������������ 167

Graphics Processing Unit (GPU)�� 168

Central Processing Unit (CPU)�� 169

Random Access Memory (RAM)��� 169

Motherboard��� 169

Power Supply Unit (PSU)�� 170

Optimizing Machine Learning Software��� 170

Summary�� 170

﻿ ■ Contents

xii

■■Chapter 10: Machine Learning Example Problems���������������������� 171

Problem 1: Asset Price Prediction�� 171

Problem Type: Supervised Learning—Regression�� 172

Description of the Experiment��� 173

Feature Selection��� 175

Model Evaluation�� 176

Ridge Regression��� 176

Support Vector Regression (SVR)��� 178

Problem 2: Speed Dating��� 180

Problem Type: Classification�� 181

Preprocessing: Data Cleaning and Imputation��� 182

Feature Selection��� 185

Model Training and Evaluation��� 186

Method 1: Logistic Regression�� 186

Method 3: K-Nearest Neighbors (KNN)�� 189

Method 2: Bayesian Classifier��� 191

Summary�� 194

■■Chapter 11: Deep Learning and Other Example Problems����������� 195

Autoencoders��� 195

Convolutional Neural Networks�� 202

Preprocessing�� 204

Model Building and Training��� 206

Collaborative Filtering�� 214

Summary�� 218

■■Chapter 12: Closing Statements�� 219

Index��� 221

xiii

About the Author

Taweh Beysolow II is a Machine Learning Scientist
currently based in the United States with a passion for
research and applying machine learning methods to
solve problems. He has a Bachelor of Science degree in
Economics from St. Johns University and a Master of
Science in Applied Statistics from Fordham University.
Currently, he is extremely passionate about all matters
related to machine learning, data science, quantitative
finance, and economics.

xv

About the Technical
Reviewer

Somil Asthana has a BTech from IITBHU India and
an MS from the University of Buffalo, US, both in
Computer Science. He is an Entrepreneur, Machine
Learning Wizard, and BigData specialist consulting
with fortune 500 companies like Sprint, Verizon, HPE,
Avaya. He has a startup which provides BigData
solutions and Data Strategies to Data Driven Industries
in ecommerce, content / media domain.

xvii

Acknowledgments

To my family, who I am never grateful enough for. To my grandmother, from whom much
was received and to whom much is owed. To my editors and other professionals who
supported me through this process, no matter how small the assistance seemed. To my
professors, who continue to inspire the curiosity that makes research worth pursuing.
To my friends, new and old, who make life worth living and memories worth keeping. To
my late friend Michael Giangrasso, who I intended on researching Deep Learning with.
And finally, to my late mentor and friend Lawrence Sobol. I am forever grateful for your
friendship and guidance, and continue to carry your teachings throughout my daily life.

xix

Introduction

It is assumed that all readers have at least an elementary understanding of statistical or
computer programming, specifically with respect to the R programming language. Those
who do not will find it much more difficult to follow the sections of this book which give
examples of code to use, and it is suggested that they return to this text upon gaining that
information.

1© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_1

CHAPTER 1

Introduction to Deep
Learning

With advances in hardware and the emergence of big data, more advanced computing
methods have become increasingly popular. Increasing consumer demand for better
products and companies seeking to leverage their resources more efficiently have
also been leading this push. In response to these market forces, we have recently seen
a renewed and widely spoken about interest in the field of machine learning. At the
cross-section of statistics, mathematics, and computer science, machine learning refers
to the science of creating and studying algorithms that improve their own behavior in
an iterative manner by design. Originally, the field was devoted to developing artificial
intelligence, but due to the limitations of the theory and technology that were present
at the time, it became more logical to focus these algorithms on specific tasks. Most
machine learning algorithms as they exist now focus on function optimization, and the
solutions yielded don’t always explain the underlying trends within the data nor give
the inferential power that artificial intelligence was trying to get close to. As such, using
machine learning algorithms often becomes a repetitive trial and error process, in which
the choice of algorithm across problems yields different performance results. This is fine
in some contexts, but in the case of language modeling and computer vision, it becomes
problematic.

In response to some of the shortcomings of machine learning, and the significant
advance in the theoretical and technological capabilities at our disposal today, deep
learning has emerged and is rapidly expanding as one of the most exciting fields of
science. It is being used in technologies such as self-driving cars, image recognition on
social media platforms, and translation of text from one language to others. Deep learning
is the subfield of machine learning that is devoted to building algorithms that explain
and learn a high and low level of abstractions of data that traditional machine learning
algorithms often cannot. The models in deep learning are often inspired by many sources
of knowledge, such as game theory and neuroscience, and many of the models often
mimic the basic structure of a human nervous system. As the field advances, many
researchers envision a world where software isn’t nearly as hard coded as it often needs to
be today, allowing for a more robust, generalized solution to solving problems.

Chapter 1 ■ Introduction to Deep Learning

2

Although it originally started in a space similar to machine learning, where the
primary focus was constraint satisfaction to varying degrees of complexity, deep
learning has now evolved to encompass a broader definition of algorithms that are able
to understand multiple levels of representation of data that correspond to different
hierarchies of complexity. In other words, the algorithms not only have predictive and
classification ability, but they are able to learn different levels of complexity. An example
of this is found in image recognition, where a neural network builds upon recognizing
eyelashes, to faces, to people, and so on. The power in this is obvious: we can reach a level
of complexity necessary to create intelligent software. We see this currently in features
such as autocorrect, which models the suggested corrections to patterns of speech
observed, specific to each person’s vocabulary.

The structure of deep learning models often is such that they have layers of non-linear
units that process data, or neurons, and the multiple layers in these models process different
levels of abstraction of the data. Figure 1-1 shows a visualization of the layers of neural
networks.

Figure 1-1.  Deep neural network

Deep neural networks are distinguished by having many hidden layers, which
are called “hidden” because we don’t necessarily see what the inputs and outputs of
these neurons are explicitly beyond knowing they are the output of the preceding layer.
The addition of layers, and the functions inside the neurons of these layers, are what
distinguish an individual architecture from another and establish the different use cases
of a given model.

More specifically, lower levels of these models explain the “how,” and the higher-levels
of neural networks process the “why.” The functions used in these layers are dependent
on the use case, but often are customizable by the user, making them significantly more
robust than the average machine learning models that are often used for classification and
regression, for example. The assumption in deep learning models on a fundamental level is
that the data being interpreted is generated by the interactions of different factors organized

Chapter 1 ■ Introduction to Deep Learning

3

in layers. As such, having multiple layers allows the model to process the data such that it
builds an understanding from simple aspects to larger constructs. The objective of these
models is to perform tasks without the same degree of explicit instruction that many
machine learning algorithms need. With respect to how these models are used, one of the
main benefits is the promise they show when applied to unsupervised learning problems,
or problems where we don’t know prior to performing the experiment that the response
variable y should be given a set of explanatory variables x. An example would be image
recognition, particularly after a model has been trained against a given set of data. Let’s say
we input an image of a dog in the testing phase, implying that we don’t tell the model what
the picture is of. The neural network will start by recognizing eyelashes prior to a snout,
prior to the shape of the dog’s head, and so on until it classifies the image as that of a dog.

Deep Learning Models
Now that we have established a brief overview of deep learning, it will be useful to discuss
what exactly you will be learning in this book, as well as describe the models we will be
addressing here.

This text assumes you are relatively informed by an understanding of mathematics
and statistics. Be that as it may, we will briefly review all the concepts necessary to
understand linear algebra, optimization, and machine learning such that we will form
a solid base of knowledge necessary for grasping deep learning. Though it does help to
understand all this technical information precisely, those who don’t feel comfortable with
more advanced mathematics need not worry. This text is written in such a way that the
reader is given all the background information necessary to research it further, if desired.
However, the primary goal of this text is to show readers how to apply machine learning
and deep learning models, not to give a verbose academic treatise on all the theoretical
concepts discussed.

After we have sufficiently reviewed all the prerequisite mathematical and machine
learning concepts, we will progress into discussing machine learning models in detail.
This section describes and illustrates deep learning models.

Single Layer Perceptron Model (SLP)
The single layer perceptron (SLP) model is the simplest form of neural network and
the basis for the more advanced models that have been developed in deep learning.
Typically, we use SLP in classification problems where we need to give the data
observations labels (binary or multinomial) based on inputs. The values in the input
layer are directly sent to the output layer after they are multiplied by weights and a bias
is added to the cumulative sum. This cumulative sum is then put into an activation
function, which is simply a function that defines the output. When that output is above
or below a user-determined threshold, the final output is determined. Researchers
McCulloch-Pitts Neurons described a similar model in the 1940s (see Figure 1-2).

Chapter 1 ■ Introduction to Deep Learning

4

Multilayer Perceptron Model (MLP)
Very similar to SLP, the multilayer perceptron (MLP) model features multiple layers
that are interconnected in such a way that they form a feed-forward neural network.
Each neuron in one layer has directed connections to the neurons of a separate layer.
One of the key distinguishing factors in this model and the single layer perceptron model
is the back-propagation algorithm, a common method of training neural networks.
Back-propagation passes the error calculated from the output layer to the input layer
such that we can see each layer’s contribution to the error and alter the network
accordingly. Here, we use a gradient descent algorithm to determine the degree to
which the weights should change upon each iteration. Gradient descent—another
popular machine learning/optimization algorithm—is simply the derivative of a
function such that we find a scalar (a number with magnitude as its only property)
value that points in the direction of greatest momentum. By subtracting the gradient,
this leads us to a solution that is more optimal than the one we currently are at until
we reach a global optimum (see Figure 1-3).

Figure 1-2.  Single layer perceptron network

Figure 1-3.  MultiLayer perceptron network

Chapter 1 ■ Introduction to Deep Learning

5

Convolutional Neural Networks (CNNs)
Convolutional neural networks (CNNs) are models that are most frequently used for
image processing and computer vision. They are designed in such a way to mimic the
structure of the animal visual cortex. Specifically, CNNs have neurons arranged in three
dimensions: width, height, and depth. The neurons in a given layer are only connected
to a small region of the prior layer. CNN models are most frequently used for image
processing and computer vision (see Figure 1-4).

Figure 1-4.  Convolutional neural network

Figure 1-5.  Recurrent neural network

Recurrent Neural Networks (RNNs)
Recurrent neural networks (RNNs) are models of Artificial neural networks (ANNs) where
the connections between units form a directed cycle. Specifically, a directed cycle is a
sequence where the walk along the vertices and edges is completely determined by the
set of edges used and therefore has some semblance of a specific order. RNNs are often
specifically used for speech and handwriting recognition (see Figure 1-5).

Chapter 1 ■ Introduction to Deep Learning

6

Restricted Boltzmann Machines (RBMs)
Restricted Boltzmann machines are a type of binary Markov model that have a unique
architecture, such that there are multiple layers of hidden random variables and a
network of symmetrically coupled stochastic binary units. DBMs are comprised of a set
of visible units and series of layers of hidden units. There are, however, no connections
between units of the same layer. DMBs can learn complex and abstract internal
representations in tasks such as object or speech recognition (see Figure 1-6).

Figure 1-6.  Restricted Boltzmann machine

Figure 1-7.  Deep belief networks

Deep Belief Networks (DBNs)
Deep belief networks are similar to RBMs except each subnetwork’s hidden layer is in fact
the visible layer for the next subnetwork. DBNs are broadly a generative graphical model
composed of multiple layers of latent variables with connections between the layers but
not between the units of each individual layer (see Figure 1-7).

Chapter 1 ■ Introduction to Deep Learning

7

Other Topics Discussed
After covering all the information regarding models, we will turn to understanding the
practice of data science. To aid in this effort, this section covers additional topics of
interest.

Experimental Design
The emphasis of this text ultimately is to give the reader a theoretical understanding of
the deep learning models such that they feel comfortable enough to apply them. As such,
it is important to discuss elements of experimental design to help the reader understand
proper ways to structure their research so it leads to actionable insights and not a waste
of time and/or energy. Largely, I will draw upon Fisher’s principles in addition to defining
best practices given the problems often utilized by deep learning.

Feature Selection
A component of experimental design, but ultimately entirely a subtopic of research unto
itself, I will cover the concept of variable selection and multiple methods used often by
data scientists to handle high dimensional data sets. Specifically, I will speak in depth
about principal components analysis as well as genetic algorithms. All the algorithms
discussed are available in the R statistical language in open source packages. For those
who want to research this area of research further, I’ll reference papers relevant to this
topic. From a deep learning perspective, we will discuss in depth how each model
performs its own specific methods of feature selection by design of the layer architecture
in addition to addressing recent discoveries in the field.

Applied Machine Learning and Deep Learning
For the final section of the text, I will walk the reader through using packages in the R
language for machine learning and deep learning models to solve problems often seen
in professional and academic settings. It is hoped that from these examples, readers will
be motivated to apply machine learning and deep learning in their professional and/
or academic pursuits. All the code for the examples, experiments, and research uses the
R programming language and will be made available to all readers via GitHub (see the
appendix for more). Among the topics discussed are regression, classification, and image
recognition using deep learning models.

History of Deep Learning
Now that we have covered the general outline of the text, in addition to what the reader
is expected to learn during this period, we will see how the field has evolved to this
stage and get an understanding of where it seeks to go today. Although deep learning
is a relatively new field, it has a rich and vibrant history filled with discovery that is still
ongoing today. As for where this field finds its clearest beginnings, the discussion brings
us to the 1960s.

Chapter 1 ■ Introduction to Deep Learning

8

The first working learning algorithm that is often associated with deep learning
models was developed by Ivakhenenko and Lapa. They published their findings in a
paper entitled “Networks Trained by the Group Method of Data Handling (GMDH)” in
1965. These were among the first deep learning systems of the feed-forward multilayer
perceptron type. Feed-forward networks describe models where the connections between
the units don’t form a cycle, as they would be in a recurrent neural network. This model
featured polynomial activation functions, and the layers were incrementally grown and
trained by regression analysis. They were subsequently pruned with the help of a separate
validation set, where regularization was used to weed out superfluous units.

In the 1980s, the neocognitron was introduced by Kunihio Fukushima. It is a
multilayered artificial neural network and has primarily been used for handwritten
character recognition and similar tasks that require pattern recognition. Its pattern
recognition abilities gave inspiration to the convolutional neural network. Regardless,
the neocognitron was inspired by a model proposed by the neurophysiologists Hubel
and Wiesel. Also during this decade, Yann LeCun et al. applied the back-propagation
algorithm to a deep neural network. The original purpose of this was for AT&T to
recognize handwritten zip codes on mail. The advantages of this technology were
significant, particularly right before the Internet and its commercialization were to occur
in the late 1990s and early 2000s.

In the 1990s, the field of deep learning saw the development of a recurrent neural
network that required more than 1,000 layers in an RNN unfolded in time, and the
discovery that it is possible to train a network containing six fully connected layers and
several hundred hidden units using what is called a wake-sleep algorithm. A heuristic,
or an algorithm that we apply over another single or group of algorithms, a wake-sleep
algorithm is a unsupervised method that allows the algorithm to adjust parameters in
such a way that an optimal density estimator is outputted. The “wake” phase describes
the process of the neurons firing from input to output. The connections from the inputs
and outputs are modified to increase the likelihood that they replicate the correct activity
in the layer below the current one. The “sleep” phase is the reverse of the wake phase,
such that neurons are fired by the connections while the recognitions are modified.

As rapidly as the advancements in this field came during the early 2000s and the
2010s, the current period moving forward is being described as the watershed moment
for deep learning. It is now that we are seeing the application of deep learning to a
multitude of industries and fields as well as the very devoted improvement of the
hardware used for these models. In the future, it is expected that the advances covered in
deep learning will help to allow technology to make actions in contexts where humans
often do today and where traditional machine learning algorithms have performed
miserably. Although there is certainly still progress to be made, the investment made
by many firms and universities to accelerate the progress is noticeable and making a
significant impact on the world.

Chapter 1 ■ Introduction to Deep Learning

9

Summary
It is important for the reader to ultimately understand that no matter how sophisticated
any model is that we describe here, and whatever interesting and powerful uses it may
provide, there is no substitute for adequate domain knowledge in the field in which these
models are being used. It is easy to fall into the trap, for both advanced and introductory
practitioners, of having full faith in the outputs of the deep learning models without
heavily evaluating the context in which they are used. Although seemingly self-evident,
it is important to underscore the importance of carefully examining results and, more
importantly, making actionable inferences where the risk of being incorrect is most
limited. I hope to impress upon the reader not only the knowledge of where they can
apply these models, but the reasonable limitations of the technology and research as it
exists today.

This is particularly important in machine learning and deep learning because
although many of these models are powerful and reach proper solutions that would be
nearly impossible to do by hand, we have not determined why this is the case always. For
example, we understand how the back-propagation algorithm works, but we can’t see it
operating and we don’t have an understanding of what exactly happened to reach such
a conclusion. The main problem that arises from this situation is that when a process
breaks, we don’t necessarily always have an idea as to why. Although there have been
methods created to try and track the neurons and the order in which they are activated,
the decision-making process for a neural network isn’t always consistent, particularly
across differing problems. It is my hope that the reader keeps this in mind when moving
forward and evaluates this concern appropriately when necessary.

11© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_2

CHAPTER 2

Mathematical Review

Prior to discussing machine learning, a brief overview of statistics is necessary. Broadly,
statistics is the analysis and collection of quantitative data with the ultimate goal of
making actionable insights on this data. With that being said, although machine learning
and statistics aren’t the same field, they are closely related. This chapter gives a brief
overview of terms relevant to our discussions later in the book.

Statistical Concepts
No discussion about statistics or machine learning would be appropriate without initially
discussing the concept of probability.

Probability
Probability is the measure of the likelihood of an event. Although many machine learning
models tend to be deterministic (based off of algorithmic rules) rather than probabilistic,
the concept of probability is referenced specifically in algorithms such as the expectation
maximization algorithm in addition to more complex deep learning architectures such
a recurrent neural networks and convolutional neural networks. Mathematically, this
algorithm is defined as the following:

Probability of Event A
number of times event Aoccurs

all possible ev
=

eents

This method of calculating probability represents the frequentist view of probability,
in which probability is by and large derived from the following formula. However, the
other school of probability, Bayesian, takes a differing approach. Bayesian probability
theory is based on the assumption that probability is conditional. In other words, the
likelihood of an event is influenced by the conditions that currently exist or events that
have happened prior. We define conditional probability in the following equation. The
probability of an event A, given that an event B has occurred, is equal to the following:

P A B
P A B

P B
|() = Ç()

()
,

Chapter 2 ■ Mathematical Review

12

Provided P B() > 0.

In this equation, we read P A B|() as “the probability of A given B” and P A BÇ() as

“the probability of A and B.”

With this being said, calculating probability is not as simple as it might seem, in that
dependency versus independency must often be evaluated. As a simple example, let’s
say we are evaluating the probability of two events, A and B. Let’s also assume that the
probability of event B occurring is dependent on A occurring. Therefore, the probability
of B occurring should A not occur is 0. Mathematically, we define dependency versus
independency of two events A and B as the following:

P A B P A|() = ()

P B A P B|() = ()

P A B P A P BÇ() = () ()

In Figure 2-1, we can envision events A and B as two sets, with the union of A and B
as the intersection of the circles:

Figure 2-1.  Representation of two events (A,B)

Should this equation not hold in a given circumstance, the events A and B are said to
be dependent.

And vs. Or
Typically when speaking about probability—for instance, when evaluating two events
A and B—probability is often in discussed in the context of “the probability of A and B” or
“the probability of A or B.” Intuitively, we define these probabilities as being two different
events and therefore their mathematical derivations are difference. Simply stated, or
denotes the addition of probabilities events, whereas and implies the multiplication of
probabilities of event. The following are the equations needed:

Chapter 2 ■ Mathematical Review

13

And (multiplicative law of probability) is the probability of the intersection of two
events A and B:

P A B P A P B AÇ() = () ()|

= () ()P B P A B|

If the events are independent, then

P A B P A P BÇ() = () ()

Or (additive law of probability) is the probability of the union of two events A and B:

P A B P A P B P A BÈ() = ()+ ()- Ç()

The symbol P A BÈ() means “the probability of A or B.”

Figure 2-2 illustrates this.

Figure 2-2.  Representation of events A,B and set S

The probabilities of A and B exclusively are the section of their respective spheres
which do not intersect, whereas the probability of A or B would be the addition of these
two sections plus the intersection. We define S as the sum of all sets that we would
consider in a given problem plus the space outside of these sets. The probability of S is
therefore always 1.

With this being said, the space outside of A and B represents the opposite of these
events. For example, say that A and B represent the probabilities of a mother coming
home at 5 p.m. and a father coming home at 5 p.m. respectively. The white space
represents the probability that neither of them comes home at 5 p.m.

Chapter 2 ■ Mathematical Review

14

Bayes’ Theorem
As mentioned, Bayesian statistics is continually gaining appreciation within the fields
of machine learning and deep learning. Although these techniques can often require
considerable amounts of hard coding, their power comes from the relatively simple
theoretical underpinning while being powerful and applicable in a variety of contexts.
Built upon the concept of conditional probability, Bayes’ theorem is the concept that the
probability of an event A is related to the probability of other similar events:

P B A
P A B P B

P A B P Bj

j j

i
k

i i

|
|

|
() = () ()

() ()å

Referenced in later chapters, Bayesian classifiers are built upon this formula as well
as the expectation maximization algorithm.

Random Variables
Typically, when analyzing the probabilities of events, we do so within a set of random
variables. We define a random variable as a quantity whose value depends on a set of
possible random events, each with an associated probability. Its value is known prior to it
being drawn, but it also can be defined as a function that maps from a probability space.
Typically, we draw these random variables via a method know as random sampling.
Random sampling from a population is said to be random when each observation is
chosen in such a way that it is just as likely to be selected as the other observations within
the population.

Broadly speaking, the reader can expect to encounter two types of random variables:
discrete random variables and continuous random variables. The former refers to
variables that can only assume a finite number of distinct values, whereas the latter are
variables that have an infinite number of possible variables. An example is the number of
cars in a garage versus the theoretical change in percentage change of a stock price. When
analyzing these random variables, we typically rely on a variety of statistics that readers
can expect to see frequently. But these statistics often are used directly in the algorithms
either during the various steps or in the process of evaluating a given machine learning or
deep learning model.

As an example, arithmetic means are directly used in algorithms such as K-means
clustering while also being a theoretical underpinning of the model evaluation statistics
such as mean squared error (referenced later in this chapter). Intuitively, we define the
arithmetic mean as the central tendency of a discrete set of numbers—specifically it is the
sum of the values divided by the number of the values. Mathematically, this equation is
given by the following:

x
N

x
i

N

i=
=
å1

1

Chapter 2 ■ Mathematical Review

15

The arithmetic mean, broadly speaking, represents the most likely value from a set
of values within a random variable. However, this isn’t the only type of mean we can use
to understand a random variable. The geometric mean is also a statistic that describes the
central tendency of a sequence of numbers, but it is acquired by using the product of the
values rather than the sum. This is typically used when comparing different items within
a sequence, particularly if they have multiple properties individually. The equation for
the geometric mean is given as follows:

i

n

i

n

n
nx x x x

=
Õæ
è
ç

ö

ø
÷ = ¼()

1

1

1 2

1

* * *

For those involved in fields where the use of time series is frequent, geometric means
are useful to acquiring a measure of change over certain intervals (hours, months, years,
and so on). That said, the central tendency of a random variable is not the only useful
statistic for describing data. Often, we would like to analyze the degree to which the data
is dispersed around the most probable value. Logically, this leads us to the discussion
of variance and standard deviation. Both of these statistics are highly related, but they
have a few key distinctions: variance is the squared value of standard deviation, and the
standard deviation is often more referenced than variance across various fields. When
addressing the latter distinction, this is because variance is much harder to visually
describe, in addition to the fact that the units that variance is in are ambiguous. Standard
deviation is in the units of the random variable being analyzed and is easy to visualize.

For example, when evaluating the efficiency of a given machine learning algorithm,
we could draw the mean squared error from several epochs. It might be helpful to collect
sample statistics of these variables, such that we can understand the dispersion of this
statistic. Mathematically, we define variance and standard deviation as the following

Variance

s
m2

2

=
-()S X

N

Var X E X E X() = - []()()é
ëê

ù
ûú

2

= - []+ []()E X XE X E X[]2
2

2

= éë ùû - [] []+ []()E X E X E X E X2 2
2

= éë ùû - [] []+ []()E X E X E X E X2 2
2

Chapter 2 ■ Mathematical Review

16

Standard Deviation

s =
-()

-

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

å
i

n

ix x

n

2

1

Also, covariance is useful for measuring the degree to which a change in one feature
affects the other. Mathematically, we define covariance as the following:

cov X Y
n

x x y y
i

n

i i,() = -() -
=
å1

1

()

Although deep learning has made significant progress in modeling relationships
between variables with non-linear correlations, some estimators that one would use
for more simple tasks require this as a preliminary assumption. For example, linear
regression requires this to be an assumption, and although many machine learning
algorithms can model complex data, some are better at it than others. As such, it
is recommended that prior to selecting estimators features be examined for their
relationship to one another using these prior statistics. As such, this leads us to the
discussion of the correlation coefficient which measures the degree to which to variables
are linearly related to each other. Mathematically, we define this as follows:

correlation
n

x x y y

x x y yi

n
i i

i i

= =
-() -()
-() -()=

år 1

1
2 2

Correlation coefficients can have a value as low as –1 and as high as 1, with the lower
bound representing an opposite correlation and the upper bound representing complete
correlation. A correlation coefficient of 0 represents complete lack of correlation,
statistically speaking. When evaluating machine learning models, specifically those that
perform regression, we typically reference the coefficient of determination (R squared)
and mean squared error (MSE). We think of R squared as a measure of how well the
estimated regression line of the model fits the distribution of the data. As such, we
can state that this statistic is best known as the degree of fitness of a given model. MSE
measures the average of the squared error of the deviations from the models predictions
to the observed data. We define both respectively as the following:

Chapter 2 ■ Mathematical Review

17

Coefficient of Determination (R Squared)

R
y y

y yi

n
i

i

2

2

21= -
-()
-()å

ˆ

ˆ

Mean Squared Error (MSE)

MSE
n

y y
i

n

i= -()
=
å1

1

2

With respect to what these values should be, I discuss that in detail later in the text. Briefly
stated, though, we typically seek to have models that have high R squared values and
lower MSE values than other estimators chosen.

Linear Algebra
Concepts of linear algebra are utilized heavily in machine learning, data science,
and computer science. Though this is not intended to be an exhaustive review, it is
appropriate for all readers to be familiar with the following concepts at a minimum.

Scalars and Vectors
A scalar is a value that only has one attribute: magnitude. A collection of scalars, known
as a vector, can have both magnitude and direction. If we have more than one scalar
in a given vector, we call this an element of vector space. Vector space is distinguished
by the fact that it is sequence of scalars that can be added and multiplied, and that can
have other numerical operations performed on them. Vectors are defined as a column
vector of n numbers. When we refer to the indexing of a vector, we will describe i as the
index value. For example, if we have a vector x, then x

1
 refers to the first value in vector x.

Intuitively, imagine a vector as an object similar to a file within a file cabinet. The values
within this vector are the individual sheets of paper, and the vector itself is the folder that
holds all these values.

Vectors are one of the primary building blocks of many of the concepts discussed
in this text (see Figure 2-3). For example, in deep learning models such as Doc2Vec
and Word2Vec, we typically represent words, and documents of text, as vectors. This
representation allows us to condense massive amount of data into a format easy to input to
neural networks to perform calculations on. From this massive reduction of dimensionality,
we can determine the degree of similarity, or dissimilarity, from one document to another,
or we can gain better understanding of synonyms than from simple Bayesian inference.
For data that is already numeric, vectors provide an easy method of “storing” this data to
be inputted into algorithms for the same purpose. The properties of vectors (and matrices),
particularly with respect to mathematical operations, allow for relatively quick calculations
to be performed over massive amounts of data, also presenting a computational advantage
of manually operating on each individual value within a data set.

Chapter 2 ■ Mathematical Review

18

Properties of Vectors
Vector dimensions are often denoted by ℝn or ℝm where n and m is the number of values
within a given vector. For example, xÎ5 denotes set of 5 vectors with real components.
Although I have only discussed a column vector so far, we can also have a row vector.
A transformation to change a column vector into a row vector can also be performed,
known as a transposition. A transposition is a transformation of a matrix/vector X such
that the rows of X are written as the columns of X  T and the columns of X are written as the
rows of X T.

Addition
Let’s define two vectors d d d dn

T= ¼[]1 2, , , and e e e en
T= ¼[]1 2, , , where

d e for i nn n= = ¼, , , ,1 2

The sum of the vectors is therefore the following:

d e d e e d d en n

T
+ = +() +() ¼ +()éë ùû1 1 2 2, , ,

Subtraction
Given that the assumptions from the previous example have not changed, the difference
between vectors d and e would be the following:

d e d e e d d en n

T
- = -() -() ¼ -()éë ùû1 1 2 2, , ,

Figure 2-3.  Representation of a vector

Chapter 2 ■ Mathematical Review

19

Element Wise Multiplication
Given that the assumptions from the previous example have not changed, the product of
vectors d and e would be the following:

d e d e e d d en n

T
* = *() *() ¼ *()éë ùû1 1 2 2, , ,

Axioms
Let a,b, and x be a set of vectors within set A, and e and d be scalars in B. The following
axioms must hold if something is to be a vector space:

Associative Property
The associative property refers to the fact that rearranging the parentheses in a given
expression will not change the final value:

x a b x a b+ +() = +()+

Commutative Property
The commutative property refers to the fact that changing the order of the operands in a
given expression will not change the final value:

a b b a+ = +

Identity Element of Addition

a a for all a A+ = Î0 ,

Where 0ÎA. 0 in this instance is the zero vector, or a vectors of zeros.

Inverse Elements of Addition
In this instance, for every a := A, there exists an element –a := A, which we label as the
additive inverse of a:

a a+ -() = 0

Chapter 2 ■ Mathematical Review

20

Identity Element of Scalar Multiplication

1() =a a

Distributivity of Scalar Multiplication with Respect to Vector
Addition

e a b ea eb+() = +

Distributivity of Scalar Multiplication with Respect to Field
Addition

a b d ad bd+() = +

Subspaces
A subspace of a vector space is a nonempty subset that satisfies the requirements for a
vector space, specifically that linear combinations stay in the subspace. This subset is
“closed” under addition and scalar multiplication. Most notably, the zero vector will
belong to every subspace. For example, the space that lies between the hyperplanes of
produced by a support vector regression, a machine learning algorithm I address later, is
an example of a subspace. In this subspace are acceptable values for the response variable.

Matrices
A matrix is another fundamental concept of linear algebra in our mathematical review.
Simply put, a matrix is a rectangular array of numbers, symbols, or expressions
arranged in rows and columns. Matrices have a variety of uses, but specifically are often
used to store numerical data. For example, when performing image recognition with a
convolutional neural network, we represent the pixels in the photos as numbers within
a 3-dimensional matrix, representing the matrix for the red, green, and blue photos
comprised of a color photo. Typically, we take an individual pixel to have 256 individual
values, and from this mathematical interpretation an otherwise difficult-to-understand
representation of data becomes possible. In relation to vectors and scalars, a matrix
contains scalars for each individual value and is made up of row and column vectors.
When we are indexing a given matrix A, we will be using the notation A

ij
. We also say

that A a Aij
m x n= Î,  .

Chapter 2 ■ Mathematical Review

21

Matrix Properties
Matrices themselves share many of the same elementary properties that vectors have
by definition of matrices being combinations of vectors. However, there are some key
differences that are important, particularly with respect to matrix multiplication. For
example, matrix multiplication is a key element of understanding how ordinary least
squares regression works, and fundamentally why we would be interested in using
gradient descent when performing linear regression. With that being said, the properties
of matrices are discussed in the rest of this section.

Addition
Let’s assume A and B are both matrices with m x n dimensions:

A B A B for i nij ij+ = +() = ¼, , , ,1 2

Scalar Multiplication
Let us assume A and B are both matrices with m x n dimensions

AB A B for i nij ij= () = ¼* , , , ,1 2

Transposition

A Aij
T

ji=

Types of Matrices
Matrices come in multiple forms, usually denoted by the shape that they take on.
Although a matrix can take on a multitude of dimensions, there are many that will
commonly references. Among the simplest is the square matrix, which is distinguished by
the fact that it has an equal amount of rows and columns:

A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

a a a a

a a a a

n

n n n n n

1 1 1 2 1 3 1

1 2 3

, , , ,

, , , ,

�
� � �

�

Chapter 2 ■ Mathematical Review

22

It is generally unlikely that the reader will come across a square matrix, but the
implications of matrix properties make discussing it necessary. That said, this brings us
to discussing different types of matrices such as the diagonal and identity matrix. The
diagonal matrix is a matrix where all the entries that are not along the main diagonal of
the matrix (from the top left corner through the bottom right corner) are zero, given by
the following:

A =
5 0 0

0 4 0

0 0 3

Similar to the diagonal matrix, the identity matrix also has zeros for values along all
entries except for the diagonal of the matrix. The key distinction here, however, is that all
the entries in the diagonal matrix are 1. This matrix is given by the following diagram:

In =
1 0 0

0 1 0

0 0 1

Another matrix you’re not likely to see, but which is important from a theoretical
perspective, is the symmetric matrix, whose transpose is equal to the non-transformed
matrix. I describe transpose subsequently in this chapter, but it can be understood simply
as transforming the rows into the columns and vice versa.

The final types of matrix I will define, specifically referenced in Newton’s method
(an optimization method described in Chapter 3), are definite and semi-definite
matrices. A symmetric matrix is called positive-definite if all entries are greater than
zero. But if all the values are all non-negative, the matrix is called positive semi-definite.
Although described in greater detail in the following chapter, this is important for the
purpose of understanding whether a problem has a global optimum (and therefore
whether Newton’s method can be used to find this global optimum).

Matrix Multiplication
Unlike vectors, matrix multiplication contains unique rules that will be helpful for readers
who plan on applying this knowledge, particularly those using programming languages.
For example, imagine that we have two matrices, A and B, and that we want to multiply
them. These matrices can only be multiplied under the condition that the number of
columns in A is the same as the number of rows in column B. We call this matrix product
the dot product of matrices A and B. The next sections discuss examples of matrix
multiplication and its products.

http://dx.doi.org/10.1007/978-1-4842-2734-3_3

Chapter 2 ■ Mathematical Review

23

Scalar Multiplication
Assume we have some matrix, A, that we would like to multiply by the scalar value sigma.
The result of this operation is displayed by the following diagram:

s s
s s s

A

A A A

A A A

A A Am

n n n m

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

1 1 1 2 1

1 2

1 1 1 2 1, , ,

, , ,

, ,�
� � �

�

� ,,

, , ,

m

n n n mA A A

� � �
�s s s1 2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Each value in the matrix is multiplied by the scalar such in the new matrix that is
subsequently yielded. Specifically, we can see this relationship displayed in the equations
following related to eigendecomposition.

Matrix by Matrix Multiplication
Matrix multiplication is utilized in several regression methods, specifically OLS, ridge
regression, and LASSO. It is an efficient yet simple way of representing mathematical
operations on separate data sets. In the following example, let D be an n x m matrix and
E be an m x p matrix such that when we multiply them both by each other, we get the
following:

D

D D D

D D D

E

E E Em

n n n m

p

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
1 1 1 2 1

1 2

1 1 1 2 1, , ,

, , ,

, , ,

,

�
� � �

�

�
� �� �

�E E Em n m p, , ,1 2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

DE

DE DE DE

DE DE DE

p

n n n p

=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1 2 1

1 2

, , ,

, , ,

�
� � �

�

Assuming that the dimensions are equal, each element in one matrix is multiplied
by the corresponding element of the other element, yielding a new matrix. Although
walking through these examples may seem pointless, it is actually more important than
it appears—particularly because all the operations will be performed by a computer.
Readers should be familiar with, if only for the purpose of debugging errors in code, the
products of matrix multiplication. We will see different matrix operations that also will
occur in different contexts later.

Chapter 2 ■ Mathematical Review

24

Row and Column Vector Multiplication
For those wondering how exactly matrix multiplication yields a single scalar value, the
following section elaborates on this further. If

X x y z Y

d

e

f

= () =,

then their matrix products are given by the following:

XY x y z

d

e

f

= ()

XY xd ye zf= + +

Contrastingly:

YX

d

e

f

x y z= ()

YX

dx dy dz

ex ey ez

fx fy fz

=

Column Vector and Square Matrix
In some cases, we need to multiple a column vector by an entire matrix. In this instance,
the following holds:

B C

d

e

f

= =
1 2 3

4 5 6

7 8 9

,

The matrix product of B and C is given by the following:

YX

d d d

e e e

f f f

=
1 2 3

4 5 6

7 8 9

Chapter 2 ■ Mathematical Review

25

Square Matrices
Among the simplest of matrix operations is when we are dealing with two square
matrices, as follows:

B D= =
1 2 3

4 5 6

7 8 9

9 8 7

6 5 4

3 2 1

,

BD =
1 2 3

4 5 6

7 8 9

9 8 7

6 5 4

3 2 1

x

=
()+ ()+ () ()+ ()+ () ()+ ()+ ()
()+
1 9 2 6 3 3 1 8 2 5 3 2 1 7 2 4 3 1

4 9

* * * * * * * * *

* 55 6 6 3 4 8 5 5 6 2 4 7 5 4 6 1

7 9 8 6

* * * * (*) * * *

* *

()+ () ()+ ()+ ()+ ()+ ()
()+ ()+ 99* * * * * * *3 7 8 8 5 9 2 7 7 8 4 9 1() ()+ ()+ () ()+ ()+ ()

BD =
30 24 18

84 69 54

138 114 90

By this same logic:

DB =
90 114 138

54 69 84

18 24 30

Row Vector, Square Matrix, and Column Vector
In other cases, we will perform operations on matrices/vectors with distinct shapes
among each:

A B C= = =
9 8 7

6 5 4

3 2 1

1 2 3

4

5

6

, ,

ABC =
9 8 7

6 5 4

3 2 1

1 2 3

4

5

6

x x

Chapter 2 ■ Mathematical Review

26

9 8 7

6 5 4

3 2 1

X 4 10 18

ABC =
36 32 28

60 50 40

54 36 18

Rectangular Matrices
Our last examples address the rectangular matrix. For this example, we have two matrices
Z and Y such that:

Z Y= =
1 2 3

4 5 6

9 8

7 6

5 4

,

ZY =
1 2 3

4 5 6

9 8

7 6

5 4

x

=
9 40

28 18

10 240

Matrix Multiplication Properties (Two Matrices)
Not Commutative
In general, given two matrices A and B, AB ≠ BA, AB and BA may not be simultaneously
defined, and even if they are, they still may not be equal. This is contrary to ordinary
multiplication of numbers. For example, to specify the ordering of matrix multiplication
verbally, pre-multiply A by B means BA while post-multiply A by C means AC. As long as
the entries of the matrix come from a ring that has an identity and n > 1, there is a pair of
n x n non-commuting matrices over the ring. A notable exception is the identity matrix,
because it commutes with every square matrix.

Chapter 2 ■ Mathematical Review

27

Distributive over Matrix Addition
Distributivity in matrices follows the same logic as it does in vectors. As such, the
following axioms hold:

Left distributivity:

A B C AB BC+() = +

Right distributivity:
A B C AC BC+() = +

Index notation of these operations respectively are the following:

å +() = å +åk ik kj kj k ik kj k ik kjA B C A B A C

å +() = å +åk ik ik kj k ik kj k ik kjA B C A C B C

Scalar Multiplication Is Compatible with Matrix Multiplication
Following our discussion earlier of scalar multiplication with respect to a matrix, we see
here that distributivity of scalar multiplication with matrices also holds. For example, we
have the following equation, which proves this as such:

l lAB A B() = ()

AB A B() = ()l l

λ is a scalar. If the entries of the matrix are real or complex numbers, then all four
quantities are equal. More generally, all four are equal if lambda belongs to the center of
the ring of entries of the matrix, because in this case l lX X= .

Index notation of this is the following:

l l lå å åK ik kj k ik kj ik kjA B A B A B() = () = ()

å å åk ik kj ik kj k ik kjA B A B A B() = () = ()l l l

Chapter 2 ■ Mathematical Review

28

Transpose
As referred to earlier, the transpose of a matrix is an operation on a matrix where the
product of this transformation is a new matrix in which the new matrix’s rows are the
original matrix’s columns and the new matrix’s columns are the original matrix’s rows.
The following equation shows how we denote this transformation, given two matrices
A and B

AB B A
T T T() =

where T denotes the transpose, the interchange of row I with column I in a matrix. This
identity holds for any matrices over a commutative ring, but not for all rings in general.
Note that A and B are reversed.

Index notation:

AB AB
T

ij ji()é
ë

ù
û = ()

= () ()å K jk ki
A B

= () ()å k
T

kj

T

ik
A B

= () ()å k
T

ik

T

kj
B A

= ()()éë ùûB AT T

ij

Trace
The trace of a product AB is independent of the order of A and B. The trace can also be
thought of as the diagonal of a matrix:

tr AB tr BA() = ()

Index notation:

tr AB A Bi k ik ik() = å å

= å åk i ki ikB A

= ()tr BA

Chapter 2 ■ Mathematical Review

29

Norms
A norm is a function that assigns a strictly positive length or size to each vector in a vector
space. In machine learning you will encounter many various norms, and they play a
vital role in reducing the MSE of regression models in addition to increasing accuracy
in classification models. For example, ridge regression uses an L2 norm to shrink the
regression coefficients during periods of high multicollinearity, and LASSO uses an L1
norm to shrink some regression coefficients to zero. I will review both of these regression
models in detail in Chapter 3.

In the context of deep learning, experimentation of adding different layers in deep
neural networks, in which norms are used to perform dimensionality reduction on
data, have proved successful at some tasks. For example, use of an L2 norm layer was
performed in a convolutional neural network. But this also can be used as a dissimilarity/
loss measure in multilayer perceptrons rather than a traditional gradient function.

Euclidean Norm
This describes the distance over a vector within Euclidean space in ℝn. Let’s assume
x x x xn= ¼()1 2, , , .

L2 Norm
This gives the distance from the origin point within the vector to the last point within x,
and is often referred to as the L2 norm:

x x x xn2

2

1
2

2
2 2= + +¼+

L1 Norm
This is the same equation as the L2 norm except that the scalars are not squared:

x x x xn= + +¼+1 2

The shape of the L1 verses L2 norms are distinguished as shown in Figure 2-4.

http://dx.doi.org/10.1007/978-1-4842-2734-3_3

Chapter 2 ■ Mathematical Review

30

Note that with the L1 norm we observe a square (or cubic) shape, and with the L2
norm we observe a circle (or spherical) shape. In certain situations, it’s optimal to use the
L1 norm to perform variable selection at the same time while also performing regression
analysis, but this is an issue that isn’t always present, and I discuss it in further detail in
Chapter 8.

The advantage of using an L1 norm is obvious in that you can perform feature
selection while performing regression. However, it should be noted that performing
feature selection after reduction of the data set has already occurred can encourage
overfitting. Strategies and general practices for building a robust model are reviewed
more extensively in Chapter 8, but it is generally suggested that readers use the L1 norm
in the instance that there has been little to no feature selection performed prior to fitting
the data to the model.

For those interested in vehicle routing problems, the taxicab (Manhattan) norm is
relevant for those who want to focus on fields related to transportation and/or delivery or
packages/persons. The taxicab norm describes the distance a taxicab would travel along
a given city block:

x x for i ni i= = ¼å , , , ,1 2

The absolute value norm is a norm on the one-dimensional vector spaces formed
by real or complex numbers. Absolute value norms have been used in place of other loss
functions or dissimilarity functions:

x x=

P-norm
Let p ≥ 1 be a real number:

Figure 2-4.  L1 and L2 norm shapes

http://dx.doi.org/10.1007/978-1-4842-2734-3_8
http://dx.doi.org/10.1007/978-1-4842-2734-3_8

Chapter 2 ■ Mathematical Review

31

x x
p i

p p= ()å
1

The shape of this norm is shown in Figure 2-5.

Figure 2-5.  P-norm

For p =1, we get the taxicab norm, for p = 2, we get the Euclidean norm, and as
p®¥, we get the infinity norm or the maximum norm. The p-norm is related to the

generalized mean or power mean. When 0 1< <p , though, we don’t get a discretely
defined norm, because it violates the triangle inequality. The triangle inequality states that
any given side of a triangle must be less than or equal to the sum of the other two sides.

Matrix Norms
A matrix norm is a function from  nxn ® that satisfies a given number of properties,
symbolized by ||A|| given a matrix A.

The properties are as follows:

	 1.	 A for all M and also A if Anxn> Î = =0 0 0

	 2.	 aM a M for all a n= Î* 

	 3.	 M N M N+ £ +

	 4.	 MN M N£ *

Chapter 2 ■ Mathematical Review

32

Inner Products
An important type of vector space that’s referenced often in machine learning literature is
the inner product. This element of vector space allows someone to know the length of a
vector or the angle between two vectors. In addition, you can also determine from the
inner product normed vector space. Specifically, the inner product is the function utilized
in the kernels of support vector machines to compute the images of the data that the
support vector machine puts into feature space from the input space. The inner product
space of is a function 〈.,.〉 defined by the following, where u and v are vectors,
u u u u v v v vn n= ¼ =] [¼éë ùû1 2 1 2, , , , , , , :

u v u v u v u v for i nn n, = + +¼+ = ¼1 1 2 2 1 2, , ,

For a function to be an inner product, it must satisfy three axioms:
Conjugate symmetry:

u v v u, ,=

Linearity in the first argument:

au bv w a u w b v w+ = +, , ,

Positive-definiteness:

For any u V u u and u u only if uÎ ³ = =, ;, ,0 0 0

Norms on Inner Product Spaces
Inner product spaces naturally have a defined norm, which is based upon the norm of the
space itself, given by the following:

x x=

Directly from the axioms, we can prove the following: The Cauchy-Schwartz inequality
states that for all vectors u and v of an inner product space, the following is true:

u v u u v v, , ,
2
£ *

u v u v, £ *

Chapter 2 ■ Mathematical Review

33

The two sides are only considered equal if and only if u and v are linearly dependent,
which means that they would have to be parallel, one of the vectors has a magnitude of
zero, or one is a scalar multiplier of the other.

Proofs
First proof: expanding out the brackets and collecting together identical terms yields the
following equation:

å å å å å å å åi
n

j
n

i j j i i
n

i j
n

j i
n

i j
n

j i ia b a b a b b a a b-() = () + () - ()2 2 2 2 2 2 jj
n

j jb a

= ()()- ()2 22 2 2
å å åi

n
i i

n
i i

n
i ia b a b

Because the lefthand side of the equation is the sum of squares of real numbers, it is
greater than or equal to zero. As such, the following must be true:

å å åi
n

i i
n

i i
n

i ia b a b2 2 2()() ³ ()

Second proof: consider the following quadratic polynomial equation:

f x a x a b x b a x bi
n

i i
n

i i i
n

i i i() = () - () + = -()å å å å2 2 2 2
2

Because f x for x() ³ Î0 any , it follows that the discriminant of f (x) is negative,

and therefore the following must be the case:

å å åi
n

i i i
n

i i
n

ia b a b() -()() £2 2 2 0

Third proof: consider the following two Euclidean norms A and B:

Let A a a a B b b bn n= + +¼+ = + +¼+1
2

2
2 2

1
2

2
2 2,

By the arithmetic-geometric means inequality, we have

å
åi

n
i i

i
n i ia b

AB
a
A

b
B

()
£ æ

è
ç

ö
ø
÷
æ

è
ç

ö

ø
÷+

æ

è
ç

ö

ø
÷

æ

è
çç

ö

ø
÷÷ =

1

2
1

2

2

2

2
,

Chapter 2 ■ Mathematical Review

34

such that

å a b AB a a a b b bi i n n£ = + +¼+ + +¼+1
2

2
2 2

1
2

2
2 2

Thus, the following is yielded:

å å åa b a bi i i
n

i i
n

i() £ ()()2 2 2

Orthogonality
Orthogonality is described as a measure or degree of unrelatedness. For example, an
orthogonal transformation of a vector yields a vector such that it is unrelated to the vector
we transformed. The geometric interpretation of the inner product in terms of angle and
length motivates much of the terminology we use in regard to those spaces. Indeed, an
immediate consequence of the Cauchy-Schwarz inequality is that it justifies defining the
angle between two non-zero vectors:

Angle x,y() =
*

arccos
,x y

x y

Outer Product
The tensor product of two vectors is related slightly to the inner product previously
defined. A tensor product is a way of creating a new vector space analogous to
multiplication of integers:

Let u and v equal two vectors where x , , =[] =[]x x x y y y y
T

1 2 3 1 2 3, , ,

y x yx

y

y

y

x x x

y x y x y x

y x y x y x

y x y x y x

TÄ = = * =
1

2

3

1 2 3

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

Eigenvalues and Eigenvectors
An eigenvalue is a number derived from a square matrix, which corresponds to a
specific eigenvector, also associated with a square matrix. Together, they “provide
the eigendecomposition of a matrix.” Plainly spoken, the eigendecomposition of a
matrix merely provides the matrix in the form of eigenvectors and their corresponding
eigenvalues. Eigendecomposition is important because it is a “method by which we can
find the maximum (or minimum) of functions involving matrices.”

Chapter 2 ■ Mathematical Review

35

Eigendecomposition:

Au u=l

A I u-() =l 0

Where A = square matrix, and u = eigenvector to matrix A (if length of vector changes
when multiplied by A):

l = eigenvalue to corresponding eigenvecvtor u

Assume the following is also true:

A =
æ

è
ç

ö

ø
÷

2 3

2 1

Therefore:

u u1 2 1 2

3

2

1

1
4 1= æ

è
ç

ö
ø
÷ = -æ

è
ç

ö
ø
÷ = = -, , ,l l

For most applications, the eigenvectors are normalized to a unit vector as such:

u uT =1

Eigenvectors of A furthermore are put together in a matrix U. Each column of U is
an eigenvector of A. The eigenvalues are stored in a diagonal matrix ,̂ where the trace,
or diagonal, of the matrix gives the eigenvalues. Thus we rewrite the first equation
accordingly:

AU UA=

A U U= Ù -1

=
-é

ë
ê

ù

û
ú -
é

ë
ê

ù

û
ú -
é

ë
ê

ù

û
ú

3 1

2 1

4 0

0 1

2 2

4 6

=
é

ë
ê

ù

û
ú

2 3

2 1

A graphical representation of eigenvectors is given in Figure 2-6.

Chapter 2 ■ Mathematical Review

36

Eigenvectors and eigenvalues become an integral part of understanding a technique
discussed later in our discussion regarding a variable selection technique called principal
components analysis (PCA). The eigendecomposition of a symmetric positive semi-
definite matrix yields an orthogonal basis of eigenvectors, each of which has a non-negative
eigenvalue. PCA studies linear relations among variables and is performed on the covariance
matrix, or the correlation matrix, of the input data set. For the covariance or correlation
matrix, the eigenvectors correspond to principal components and the eigenvalues to the
variance explained by the principal components. Principal component analysis of the
correlation matrix provides an orthonormal eigenbasis for the space of the observed data:
in this basis, the largest eigenvalues correspond to the principal components that are
associated with containing the most covariability of the observed dataset.

Linear Transformations
A linear transformation is a mapping V W® between two modules that preserves the
operations of addition and scalar multiplication. When V = W, we call this a linear
operator, or endomorphism, of V. Linear transformations always map linear subspaces
onto linear subspaces, and sometimes this can be in a lower dimension. These linear
maps can be represented as matrices, such as rotations and reflections. An example of
where linear transformations are used is specifically PCA. Discussed in detail later, PCA is
an orthogonal linear transformation of the features in a data set into uncorrelated
principal components such that for K features, we have K principal components. I discuss
orthogonality in detail in the following sections, but for now I focus on the broader
aspects of PCA. Each principal component retains the variance from the original data set
but gives us a representation of it such that we can infer the importance of a given
principal component based on the contribution of the variance to the data set it provides.
When translating this to the original data set, we then can remove features from the data
set that we feel don’t exhibit significant amounts of variance.

Figure 2-6.  Visulaization of eigenvectors

https://en.wikipedia.org/wiki/Explained_variance#Explained variance

Chapter 2 ■ Mathematical Review

37

A function  : n m® is called a linear transformation if the following is true:

 ax a x for every x and an() = () Î Î 

  x y x y for every x y n+() = ()+ () Î, , 

When we fix the bases for ℝn and ℝm, the linear transformation ℒ can be represented
by a matrix A. Specifically, there exists A mxnÎ such that the following representation

holds. Suppose x nÎ is a given vector and x ' is the representative of x with respect to

the given basis for ℝm. If y x= () and Y ' is the representative of y with respect to the

given basis for ℝm, then

¢ =y Ax¢

We call A the matrix representation of ℒ with respect to the given bases for ℝn and ℝm.

Quadratic Forms
A quadratic form is a homogenous polynomial of the second degree in a number of
variables and have applications in machine learning. Specifically, functions we seek to
optimize that are twice differentiable can be optimized using Newton’s method. The
power in this is that if a function is twice differentiable, we know that we can reach an
objective minimum.

A quadratic form f n m: ® is a function such that the following holds true:

F x x QxT() =

Where Q is an n x n real matrix. There is no loss of generality in assuming Q to be
symmetric—that is, Q QT= .

Minors of a matrix Q are the determinants of the matrices obtained by successively
removing rows and columns from Q. The principal minors are detQ itself and the
determinants of matrices obtained by removing an ith row and an ith column.

Sylvester’s Criterion
Sylvester’s criterion is necessary and sufficient to determine whether a matrix is positive
semi-definite. Simply, it states that for a matrix to be positive semi-definite, all the leading
principal minors must be positive.

Proof: if real-symmetric matrix A has non-negative eigenvalues that are positive,
it is called positive-definite. When the eigenvalues are just non-negative, A is said to be
positive semi-definite.

Chapter 2 ■ Mathematical Review

38

A real-symmetric matrix A has non-negative eigenvalues if and only if A can be
factored as A B BT= , and all eigenvalues are positive if and only if B is non-singular.

Forward implication: if A RnxnÎ is symmetric, then there is an orthogonal matrix P

such that A PDPT= , where D diag n= ¼()l l l1 2 , , is a real diagonal matrix with entries

such that its columns are the eigenvectors of A. If li ³ 0 for each I, D
1

2 exists.

Reverse implication: if A can be factored as A = B^TB, then all eigenvalues of A are
non-negative because for any eigenpair (x, λ)

l =
æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷ =

æ

è

ç
ç

ö

ø

÷
÷
³

x Ax

x

x B Bx

x x

Bx

x

T

Tx

T T

T

2

2 0

Orthogonal Projections
A projection is linear transformation P from a vector space to itself such that P P2 = .
Intuitively, this means that whenever P is applied twice to any value, it gives the same
result as it it were applied once. Its image is unchanged and this definition generalizes
the idea of graphical projection moreover.  is a subspace of

 n x xif x x for all .1 2 1 2, ,Î ® + Î Î a b a b The dimension of this subspace is also

equal o the maximum number of linearly independent vectors in . If  is a subspace of

ℝn, the orthogonal complement of  , demoted  ^ , consists of all vectors that are

orthogonal to every vector in . Thus, the following is true:

 ^ = = Î{ }x v x for all vT: 0

The orthogonal complement of  is also a subspace. Together,  and ^ span ℝn in

the sense that every vector x nÎ can be represented as

x x x= +1 2

where x x1 2Î Î ^ and . We call the above representation the orthogonal decomposition

of x with respect to . We say that x
1
 and x

2
 are orthogonal projections of x onto the

subspaces  and  ^ respectively. We write n = Ä ^  , and say that ℝn is a direct sum

of  and  ^ . We say that a linear transformation of P is an orthogonal projector onto 

for all x nÎ , we have Px x PxÎ - Î ^ and .

Range of a Matrix
The range of a matrix defines the number of column vectors it contains.

Let A mxnÎ . The range, or image, of A, is written as the following:

 A Ax x n() Î{ } : 

Chapter 2 ■ Mathematical Review

39

Nullspace of a Matrix
The nullspace of a linear map L V W: ® between two vector spaces is the set of all

elements of v of  for which  v() = 0, where zero denotes the zero vector in .

The nullspace, or kernel, of A is written as the following:

 A x Axn() Î ={ }  : 0

Hyperplanes
Earlier I mentioned the significance of the support vector machine and the hyperplane.
In the context of regression problems, the observations within the hyperplane are
acceptable as response variable solutions. In the context of classification problems,
the hyperplanes form the boundaries between different classes of observations
(shown in Figure 2-7).

Figure 2-7.  Visualization of hyperplane

We define a hyperplane as a subspace of one dimension less than its ambient space,
otherwise known as the feature space surrounding the object.

Let u u u un= ¼[] Î1 2, , , , u  , where at least one of the u
i
 is non-zero. The set of all

points x x x xn

T= ¼[]1 2, , , that satisfy the linear equation

u x u x u x vn n1 1 2 2+ +¼+ =

Chapter 2 ■ Mathematical Review

40

is called a hyperplane of the space ℝn. We may describe the hyperplane with the following
equation:

x u x vn TÎ ={ } :

A hyperplane is not necessarily a subspace of ℝn because, in general, it does not
contain the origin. For n = 2, the equation of the hyperplane has the form u x u x v1 1 2 2+ = ,
which is the equation of a straight line. Thus, straight lines are hyperplanes in ℝ2. In ℝ3,
hyperplanes are ordinary planes. The hyperplane H divides ℝn into two half spaces,
denoted by the following:

H x u xn T
+ = Î ³{ } : 0 ,

H x u xn T
- = Î £{ } : 0 .

Here H+ is the positive half-space, and H- is the negative half-space. The
hyperplane H itself consists of the points for which á - ñ =u x a, 0 , where a a a an

T= ¼[]1 2, , ,
is an arbitrary point of the hyperplane. Simply stated, the hyperplane H is all of the points
x for which the vectors u and x – a are orthogonal to one another.

Sequences
A sequence of real numbers is a function whose domain is the set of natural numbers
1,2,…,k, and whose range is contained in ℝ. Thus, a sequence of real numbers can be
viewed as a set of numbers {x

1
, x

2
, …, x

k
}, which is often also denoted as {x

k
}.

Properties of Sequences
The length of a sequence is defined as the number of elements within it. A sequence of
finite length n is also called an n-tuple. Finite sequences also include sequences that are
empty or ones that have no elements. An infinite sequence refers to a sequence that is
infinite in one direction. It is therefore described as having a first element, but not having
a final element. A sequence with neither a first nor a final element is known as a two-way
infinite sequence or bi-infinite sequence.

Moreover, a sequence is said to be monotonically increasing if each term is greater
than or equal to the one before it. For example, the sequence an n() =1 is monotonically

increasing if an only if for all a an n+ ³1 . The terms non-decreasing and non-increasing are

often used in place of increasing and decreasing in order to avoid any possible confusion
with strictly increasing and strictly decreasing respectively.

Chapter 2 ■ Mathematical Review

41

If the sequence of real number is such that all the terms are less than some real
numbers, then the sequence is said to be bounded from above. This means that there
exists M such that for all n, a

n
 ≤ M. Any such M is called an upper bound. Likewise, if, for

some real m, a mn ³ for all n greater than some N, then the sequence is bounded from
below, and any such m is called the lower bound.

Limits
A limit is the value that a function or sequence approaches as the input or index
approaches some value. A number x*Î is called the limit of the sequence if for any

positive ϵ there is a number K such that for all k K xk x> - <*,  :

x xk
k

*

®¥
= lim

A sequence that has a limit is called a convergent sequence. Informally speaking, a
singly infinite sequence has a limit, if it approaches some value L, called the limit, as n
becomes very large. If it converges towards some limit, then it is convergent. Otherwise it
is divergent. Figure 2-8 shows a sequence converging upon a limit.

Figure 2-8.  A function converging upon 0 as x increases

We typically speak of convergence within the context of machine learning and
deep learning with reaching an optimal solution. This is ultimately the goal of all of our
algorithms, but this becomes more ambiguous with the more difficult use cases readers
encounter. Not every solution has a single global optimum—instead it could have local
optima. Methods of avoiding these local optima are more specifically addressed in later
chapters. Typically this requires parameter tuning of machine learning and deep learning
algorithms, the most difficult part of the algorithm training process.

Chapter 2 ■ Mathematical Review

42

Derivatives and Differentiability
Differentiability becomes an important part of machine learning and deep learning,
most specifically for the purpose of parameter updating. This can be seen via the back-
propagation algorithm used to train multilayer perceptrons and the parameter updating
of convolutional neural networks and recurrent neural networks. A derivative of a
function measures the degree of change in one quantity to the degree of another. One of
the most common examples of a derivative is a slope (change in y over x), or the return of
a stock (price percentage change over time). This is a fundamental tool for calculus but is
also the basis of many of the models we will study in the latter part of the book.

A function is considered to be affine if there exists a linear function  : n m® and
a vector y mÎ such that

A x x y() = ()+

for every x nÎ . Consider a function f n m: ® and a point x n
0Î . We want to find

an affine function A that approximates f near the point x0. First, it’s natural to impose this
condition:

A x f x0 0() = ()

We obtain y f x x= ()- ()0 0 . By the linearity of ℒ,

   + = ()- ()+ () = -()+ ()y x x f x x x f x0 0 0 0

A x x x f x() = -()+ () 0 0

We also require that A(x) approaches f(x) faster than x approaches x
0
.

Partial Derivatives and Gradients
Also utilized heavily in various machine learning derivations is the partial derivative.
It is similar to a derivative, except we only take the derivative of one of the variables in
the function and hold the others constant, whereas in a total derivative all the variables
are evaluated. The gradient descent algorithm is discussed in Chapter 3, but we can
discuss the broader concept of the gradient itself now. A gradient is the generalization of
the concept of a derivative when applied to functions of several variables. The gradient
represents the point of greatest rate of increase in the function, and its magnitude is the
slope of the graph in that direction. It’s a vector field whose components in a coordinate
system will transform when going from one system to another:

Ñ () = () = ()
f x grad f x

df x

dx

http://dx.doi.org/10.1007/978-1-4842-2734-3_3

Chapter 2 ■ Mathematical Review

43

Hessian Matrix
Functions can be differentiable more than once, which leads us to the concept of the
Hessian matrix. The Hessian is a square matrix of second-order partial derivatives of a
scalar values function, or scalar field:

H =

¶
¶

¶
¶ ¶

¶
¶ ¶

¶
¶ ¶

¶
¶ ¶

¶
¶

æ 2

1
2

2

1 2

2

1

2

1

2

2

2

2

f

x

f

x x

f

x x

f

x x

f

x x

f

x

n

n n n

�

� � �

�
èè

ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷

If the gradient of a function is zero at some point x, then f has a critical point at x.
The determinant of the Hessian at x is then called the discriminant. If this determinant
is zero, then x is called a degenerate critical point of f, or a non-Morse critical point of f.
Otherwise, it is non-degenerate.

A Jacobian matrix is the matrix of first-order partial derivatives of a vector values
function. When this is a square matrix, both the matrix and its determinant are referred to
as the Jacobian:

J = =
¶
¶

¼
¶
¶

é

ë
ê

ù

û
ú =

¶
¶

¶
¶

¶
¶

¶
¶

é

ë

ê
êdf

dx

f

x

f

x

f

x

f

x

f

x

f

x

n

n

m m

n

1

1

1

1

1 �

� � �

�

êê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

Summary
This brings us to the conclusion of the basic statistics and mathematical concepts that
will be referenced in later chapters. Readers should feel encouraged to check back with
this chapter when unsure about anything in later chapters. Moving forward, we’ll address
the more advanced optimization techniques that power machine learning algorithms, as
well as those same machine learning algorithms that formed the inspiration of the deep
learning methods we’ll tackle afterwards.

45© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_3

CHAPTER 3

A Review of Optimization
and Machine Learning

Before we dive into the models and components of deep learning in depth, it’s important
to address the broader field it fits into, which is machine learning. But before that, I want
to discuss, if only briefly, optimization. Optimization refers to the selection of a best
element from some set of available alternatives. The objective of most machine learning
algorithms is to find the optimal solution given a function with some set of inputs. As
already mentioned, this often comes within the concept of a supervised learning problem
or an unsupervised learning problem, though the procedures are roughly the same.

Unconstrained Optimization
Unconstrained optimization refers to a problem in which we much reach an optimal
solution. In contrast to constrain optimization, there are constraints placed on what value
of x we choose, allowing us to approach the solution from significantly more avenues. An
example of an unconstrained optimization problem is the following toy problem:

Minimize f x where f x x x() () = ∈ −[], , ,2 100 100

Figure 3-1 visualizes this function.

Chapter 3 ■ A Review of Optimization and Machine Learning

46

In this problem, because there are no constraints, we are allowed to choose whatever
number for x is within the bounds defined. Given the equation we seek to minimize, the
answer for x is 100. As we can see, we minimize the value of f(x) globally when we choose x.
Therefore, we state that x = 100 = x*, which is a global minimizer of f(x). In contrast, here’s a
constrained optimization problem:

Minimize f x s t subject to x() () ∈, . . Ω

where f x x Subject to x() = ∈2 Ω

The function f : n → that we want to minimize is a real-valued function and is
called the objective/cost function. The vector x is a vector of length n consisting of
independent variables where x x= …[] ∈1 2, , ,x xn

T n . The variables within this vector

commonly are referred to as decision variables. The set Ω is a subset of ℝ called the
constraint/feasible set. We say that the preceding optimization problem is a decision
problem in which we must find the best vector of x that satisfies the objective subject to
the constraint. Here, the best vector of x would result in a minimization of the objective
function. In this function, because we have a constraint placed, we call this a constrained
optimization problem. x∈Ω is known as the set constraint. Often, this takes the form of

Ω= () = () ≤{ }x : ,h x g x0 0

where h and g are some given functions. h and g are referred to as the functional
constraints.

Imagine that we are still viewing the same function displayed in Figure 3-1, except
that our feasible set is Ω. For simplicity’s sake, let’s say that h(x) and g  (x) are equal to the
following:

h x g x() = () = −10 x

Figure 3-1.  Visualization of f(x)

Chapter 3 ■ A Review of Optimization and Machine Learning

47

As such, the answer for the constrained optimization problem would be x = 10, because
this is closest to the global minimizer of f(x), x = 100, while also satisfying the functional
constraints listed in Ω. As we can see, the constraint set limits our ability to choose solutions,
and therefore compromises must be made. We often encounter constrained optimization in
a practical sense on a daily basis. For example, say a business owner is trying to minimize the
cost of production in their factory. This would be a constrained optimization problem,
due to the fact that should the business owner not want to adversely affect their business
(and still continue production), there likely is a production output constraint that they
will have placed on them, limiting the possible choices they have.

Most machine learning problems readers will encounter are framed in the scope
of a constrained optimization problem, and that constraint is usually a function of the
data set being analyzed. The reason for this is often because prior to the development of
deep learning models, this was the closest method by which we could approach artificial
intelligence. Broadly speaking, most machine learning algorithms focused on regression
are constrained optimization problems, where the objective is to minimize the loss of
accuracy within a given model. As we briefly discussed in the previous toy problem, there
are two kinds of minimizers: local and global.

Local Minimizers
Assume that f n m: → is a real-values function defined on some set Ω∈n . A point x*

is a local minimizer of f over Ω f x f x() ≥ ()∗ for all x∈Ω .

Global Minimizers
Assuming the same function f and its tertiary properties, a point x* is a global minimizer
of f over Ω if f x f x() ≥ ()* for all x .∈Ω

Broadly speaking, there can be multiple local minimizers in a given problem, but if
there is a global minimum, there can only been one. In Figure 3-2, we can see this with
respect to a mapping of a function.

Figure 3-2.  Local versus global minima

Chapter 3 ■ A Review of Optimization and Machine Learning

48

Depending on how much of the function we are evaluating at a given moment, we can
choose a multitude of local minima. But if we’re evaluating the full range of this function,
we can see that there is only one global minimum. It is useful now to discuss how exactly
we know that a solution we have reached, mathematically speaking, is optimal.

Conditions for Local Minimizers
In this section, we derive conditions for a point x* to be a local minimizer. We use
derivatives of a function f n: → . Recall that the first-order derivative of f, denoted Df is

Df
f

x

f

x

f

xn



∂
∂

∂
∂

…
∂
∂











1 2

, , ,

The gradient of f is just the transpose of Df. The second derivative, or the Hessian of f, is

F x D f x

f x

x

f x

x x

f x

x x

f x

x

n

n

() () =

∂ ()
∂

∂ ()
∂ ∂

∂ ()
∂

∂ ()
∂

�

�

� � �

�

2

2

1
2

2

1

2

1

2

nn
2























The first derivate/gradient gives us the direction of an approximation of the
function, f, at a specific point. The second derivative, or Hessian, gives us a quadratic
approximation of f at a point. Both the Hessian and the gradient can be used to find
local solutions for optimization problems. The gradient is used, as discussed earlier,
for parameter updating such as in linear regression via gradient descent. However,
the Hessian also can be used for parameter updating in the context of deep learning.
I talk about this more later, but recurrent neural networks typically are used in the
case of modeling data that occurs in sequences such as time series or text segments.
Specifically, recurrent neural networks often are difficult to train by a product of certain
data sequences having long-term data dependencies. When training other deep learning
architectures, we encounter training problems due to the very large number of weights.
This creates a large Hessian matrix, virtually making Newton’s method defunct.

Hessian-free optimization focuses on minimizing an objective function where
instead of computing the Hessian, we compute the matrix-vector product. Provided that
the Hessian matrix is positive-definite, we converge to a solution. By solving the following
equation, we can effectively use Newton’s method on the weight matrix to train a network

H
f d f

p =
∇ +()−∇ ()

→
lim



0

θ θ

where H
p
 is the matrix-vector product, θ is some parameter (in this case, weights), and d is

a user determined value.

Chapter 3 ■ A Review of Optimization and Machine Learning

49

In cases where the Hessian matrix is not positive-definite, convergence upon a
solution is not guaranteed and leads to radically different results. We can, however,
approximate the Hessian matrix using a Gauss-Newton approximant of the Hessian,
whereupon the Hessian equals

H J JT=

where J is the Jacobian matrix of the parameter.
This yields a guaranteed positive-definite matrix and therefore validates the

assumptions necessary to guarantee convergence. Moving forward from regression, I want to
discuss one of the mathematical underpinnings of classification algorithms: neighborhoods.

Neighborhoods
Neighborhoods are an important concept in the paradigm of classification algorithms.
For example, the preeminent algorithm that uses this concept is K-nearest neighbors.
One of the simpler algorithms, the user-defined K parameter determines the number of
neighboring data points that are used to ultimately classify an object to a class of points.
We define a neighborhood of a point as a set of points containing the aforementioned
point without leaving the set. Consider a point x n∈ . A neighborhood of this set would
be the equation

y y xn∈ − <{ } : 

where ϵ is some positive number defined in a given context. ϵ represents the bound that
defines the size of a given neighborhood. Visually, we can consider a neighborhood as a
sphere, or a space between two half spaces, with x as the center and ϵ as the radius, as in
Figure 3-3.

Figure 3-3.  Visualization of a neighborhood of a point x

Chapter 3 ■ A Review of Optimization and Machine Learning

50

This will be an important to understanding any algorithms that use epsilon intensive
loss to define separation of observations. Epsilon intensive loss is used particularly in
the case of support vector machines, but K-nearest neighbors draws upon the concept of
neighborhoods broadly to define observations within a given class.

Interior and Boundary Points
A point x S∈ is said to be an interior point of the set S if the set S contains some
neighborhood of x. If all points within some neighborhood of x are also in S, the set of all the
interior points of S is called the interior of S. A point x is said to be a boundary point of the
set S if every neighborhood of x contains a point in S and a point not in S. Similarly, all the
boundary points of S take the name boundary. A set is open if it contains a neighborhood of
each of its points, or has no boundary points. A set is closed if it contains its boundary. A set is
compact if it is both closed and bounded.

We’ve now reached the conclusion of our review of optimization. Now that we have
addressed the prerequisite information necessary, we can discuss machine learning in
depth and grasp the broader implications of the algorithms within this paradigm.

Machine Learning Methods: Supervised Learning
Machine learning can be segregated into two broad paradigms: supervised and
unsupervised learning. Supervised learning is distinguished by the fact that prior to fitting
a model, we know what the label/response variable Y is. As such, we can evaluate the
efficacy of a model in an efficient manner. In unsupervised learning, we don’t have this
information, which doesn’t allow us to determine the degree to which we are correct.
Prior to discussing the challenges of both paradigms, it’s reasonable to discuss the
development of this field

History of Machine Learning
Machine learning was developed to create artificial intelligence in the mid-1950s.
Its focus shifted towards creating programs that improved upon iteration, but were
specifically made to accomplish one task and could generally be viewed as a method of
function optimization. Artificial intelligence eventually began to become its own field,
and as the end of the 20th century came, machine learning started to become a more
developed and mature science. Machine learning takes contributions and inspiration
from many fields, such as statistics and computer science, and the overlap is such that
many statistics programs often include and encourage their students to become well
versed in the techniques. The upcoming sections will address some of the most common
machine learning algorithms, including some of those that serve as inspiration for the
deep learning models described in the following chapters.

Chapter 3 ■ A Review of Optimization and Machine Learning

51

What Is an Algorithm?
Prior to this point, I’ve occasionally referred to algorithms. Simply stated, an algorithm
is a process that we create for the purpose of accomplishing some task. In the following
section, prior to tackling deep learning models in the next chapters, we will review
important machine learning algorithms that will be utilized in deep learning models in
addition to algorithms that are useful in the general practice of data science.

Regression Models
Regression refers to a set of problems in which we are trying to predict specific values.
These could be prices of homes, the salary of an employee, or the length of a flower
petal. More importantly, regression can also be used to measure the degree to which an
explanatory variable(s), x, affect the response variable, Y.

Linear Regression
Imagine we’re trying to predict the television ratings of a given show. We know, due to
prior research, that the most popular demographic for this show is people aged 25–50
years old. We also see that there is a strong linear correlation between these two variables.
As such, we decide to consider this our explanatory, or x, variable and the ratings our
response, or Y, variable. How exactly would we proceed? Simple linear regression would
be the most logical method. Simple linear regression utilizes relatively basic concepts for
modeling explanatory variable(s), x, to a response variable, Y. Here we have the model

E Y x xk k() = + +…+β β β0 1 1 ,

where β
0
 is the y-intercept and β

1
 through β

k
 are the partial slopes corresponding to

each explanatory variable x
1
 through x

k
, where k = 1, 2, …, m, and m = the number of

explanatory variables. This is known as a linear probabilistic model, because we’re
modeling the expectation of Y based on the assumption that it lies somewhere within a
distribution of possible points from the ordinary least squares prediction of the point.

Ordinary Least Squares (OLS)
Ordinary least squares is the most basic form of linear regression. The intuition behind
why we pick that specific E(Y) value at a specific point x is that we want to find a value
for E(Y) that minimizes the squared difference between the actual and predicted Y.
When the preceding assumptions are met in a given experiment, we find that the OLS
method yields minimum variance and unbiased estimator of Y and also is the maximum
likelihood estimator for Y.

Chapter 3 ■ A Review of Optimization and Machine Learning

52

Assumptions underlying this model are the following:

•	 Error terms are normally distributed.

•	 There is constant variance when observing the error terms.

•	 Observations of data are independently and identically
distributed.

•	 There is no multicollinearity across explanatory variables.

The intuition behind why we pick that specific E(Y) value at a specific point x is that
we want to find a value for E(Y) that minimizes the squared difference between the actual
and predicted Y. When the preceding assumptions are met in a given experiment, we find
that the OLS method yields minimum variance and unbiased estimator of Y and also is
the maximum likelihood estimator for Y. Imagine we have an xy plot, similar to the one
show in Figure 3-4.

There are in theory an infinite number of E(Y) line plots that we could make.
However, only one solution yields an optimal solution that minimizes the error between
E(Y) and y the most. Assuming there is only one explanatory variable, we derive the
regression coefficient as the following:

β̂ =
−




















−

= = =

= =

∑ ∑ ∑

∑ ∑

i

n

i i
i

n

i
i

n

i

i

n

i
i

n

x y
n

x y

x
n

x

1 1 1

1

2

1

1

1
ii































2

Figure 3-4.  Plotting of the response variable x

Chapter 3 ■ A Review of Optimization and Machine Learning

53

Alternatively, the regression coefficient equation can be written

ˆ argminβ β
β

= −y x

given by

β̂ = ()−X X X yT T1

The purpose of what we are doing here is to minimize the magnitude of the regression
coefficient so that when we multiply it by x. Simply stated, we are trying to fine a line of
best fit between the data and the regression line such that we minimize the average error
between the predictions and actual data points. After we derive the regression coefficient,
we can find the y-intercept, or the value of y when x = 0, as the following:

β β0 = −y x

From this, we have all of the components of the E(Y) equation and can now model
the data.

That said, using OLS to find a solution is not always the most optimal method. In
cases of relatively small and simple data, utilizing OLS isn’t particularly a problem. When
data is complex and large, and we haven’t satisfied the assumptions of OLS regression, it
can be more effective to utilize the gradient descent method.

Gradient Descent Algorithm
As mentioned, the gradient of a function represents the point of greatest rate of increase
in the function, and its magnitude is the slope of the graph in that direction. With that in
mind, how can we apply the concept of a gradient to an algorithm in order to iteratively
improve that? Gradient descent is an iterative algorithm in which you update a parameter
by the negative of the gradient subject to some threshold you define or a certain number
of iterations. The gradient is usually multiplied by a learning rate, which determines the
speed of convergence toward an optimal solution for the function.

In the context of linear regression, our goal is to minimize the residual value between
y^ and y, known as the error function, given by

J
m

h x y
i

m
i iθ θ θ0 1

1

21

2
,() = ()−()

=
∑

where hθ(xi) is the predicted y value.

Chapter 3 ■ A Review of Optimization and Machine Learning

54

If our objective is to minimize the cost function as quick as possible, and the gradient
is the vector that points in the steepest direction, we want to take the gradient of the cost
function. The gradient is given by the following:

d

d m
h x y

i

m
i i

θ
θ θ θ

0
0 1

1

1
,() = ()−()

=
∑

d

d m
h x y x

i

m
i i

jθ
θ θ θ

1
0 1

1

1
,() = ()−()()

=
∑

To update the parameters, both the y-intercept and the regression coefficient, we
calculate the following until the algorithm converges upon an optimal solution:

θ θ α
θ

θ θ0 0
0

0 1: ,= − ()d

d

θ θ α
θ

θ θ1 1
1

0 1: ,= − ()d

d

Multiple Linear Regression via Gradient Descent
The intuition behind multiple linear regression via gradient descent is the same as with
simple linear regression—there is just a modification to accommodate for the multiple
partial slopes being adjusted upon each iteration:

θ θ α
θ

θ θ θ0 0
0

0 1: , , ,= − …()d

d n

θ θ α
θ

θ θ θj j
j

n

d

d
: , , ,= − …()0 1

Learning Rates
One last aspect to discuss is the learning rate, denoted as α, which in fact is one of the
most important aspects of the gradient descent algorithm. The learning rate determines
the speed at which the gradient descent algorithm converges upon an optimal solution.
Usually, the learning rate is initialized at a relatively small value—typically .01 or less.
That said, choosing an optimal learning rate isn’t necessarily always obvious, and not
doing so can affect the “solution” yielded. Usually, gradient descent algorithms have
two stopping conditions: 1) an optimal solution has been found, and 2) the maximum

Chapter 3 ■ A Review of Optimization and Machine Learning

55

number of iterations allowed have been reached. The following problems associated with
poor algorithm performance are due to the following situations:

•	 The learning rate is too small: In the instance that we choose a
learning rate that’s too small, the solution that the algorithm
gives is in fact not the optimal solution, and we reach it due to
the second stopping condition. Some might say that a way to
avoid this is by choosing a learning rate is to increase the number
of iterations, but that very well can defeat the purpose of this
method, which is its computational efficiency.

•	 The learning rate is too large: If we are to choose a learning rate
that is considerably larger than necessary, we may also never
reach an optimal solution, though this one is due to a different
reason. When the learning rate is too large, we find that the cost
function upon each iteration may overcorrect and give us updated
values for the coefficient that are far too small or far too large. As
such, our reaching a solution would be by luck, and in most cases
we would end up reaching the maximum solution.

Choosing An Appropriate Learning Rate
Now that we have an understanding of what the problems associated with choosing
an incorrect learning rate are, we need to find out how to choose one. One possible
solution is to hardcode various gradients and see how the algorithms perform across each
iteration. In the following method, we update the step size upon each iteration of the
gradient descent algorithm.

The bold driver approach compares the most recent gradient value to the gradient
value derived upon the prior iteration. If the error has decreased, increase the learning
rate by a moderate amount. If the error has increased, decrease the learning rate by 50%.

In the following code example, we are modifying the iris data set. This data set dates
back to Ronald Fisher; he used it for an initial set of experiments. It is popular when
displaying fundamental aspects of various statistical and machine learning algorithms.
Here, we’re taking the first column of the iris data set and modeling that against an X
variable (which is merely length), such that the data displayed forms a linear pattern.
This is just an example to display the mechanics of OLS linear regression. In the following
code, we fit the data to the OLS regression via the lm() function. We then calculate the
sum of squared residuals, which we denote as Cost in the output. We then extract the
regression coefficients for this model from the lm() function and then output these two
attributes in a data frame:

#Modifying Data From Iris Data Set
data(iris)
Y <- matrix(iris[,1])
X <- matrix(seq(0,149, 1))

Chapter 3 ■ A Review of Optimization and Machine Learning

56

olsExample <- function(y = Y, x = X){
 y_h <- lm(y ~ x)(1)
 y_hf <- y_h$fitted.values
 error <- sum((y_hf - y)^2) (2)
 coefs <- y_h$coefficients (3)
 output <- list("Cost" = error, "Coefficients" = coefs)
 return(output)
}

When we run the code, we observe the results shown in Figure 3-5.

Cost is the sum of squares and the Coefficients accordingly are listed as the y
intercept followed by the partial slope for the x variable. We will use this as a baseline for
comparing the performance of linear regression via gradient descent. Again, the purpose
of this explanation is to show the efficiency and ability of the gradient descent algorithm
to replicate the results of a simple OLS regression:

#Gradient Descent Without Adaptive Step
gradientDescent <- function(y = Y, x = X, alpha = .0001, epsilon = .000001,
maxiter = 300000){
 #Intializing Parameters
 theta0 <- 0
 theta1 <- 0
 cost <- sum(((theta0 + theta1*x) - y)^2)
 converged <- FALSE
 iterations <- 1

Moving forward, we define a function for the implementation of linear regression via
gradient descent. This gradient descent algorithm has a constant learning rate, though
you can alter this parameter, as well as the loss tolerance, should you choose to use this
implementation on other data sets. We have defined the maximum amount of iterations
as 300,000, which will force the algorithm to cease at the solution should it not reach an
optimal one before that. When analyzing the code specifically, we begin by initializing the
parameters theta0 and theta1 at 0. Users may feel free to alter the code and initialize the
parameters with values randomly sampled from a normal distribution, but should divide

Figure 3-5.  Output of OLS regression function

Chapter 3 ■ A Review of Optimization and Machine Learning

57

these values by 10 to ensure that they are not overly large. We initialize the cost function
as the SSR of 0 minus all y values, from which we will begin to alter the parameters:

#Gradient Descent Algorithm
while (converged == FALSE){
 gradient0 <- as.numeric((1/length(y))*sum((theta0 + theta1*x) - y))
 gradient1 <- as.numeric((1/length(y))*sum((((theta0 + theta1*x) - y)*x)))

 t0 <- as.numeric(theta0 - (alpha*gradient0))
 t1 <- as.numeric(theta1 - (alpha*gradient1))

 theta0 <- t0
 theta1 <- t1

 error <- as.numeric(sum(((theta0 + theta1*x) - y)^2))

 if (as.numeric(abs(cost - error)) <= epsilon){
 converged <- TRUE
 }
 cost <- error
 iterations <- iterations + 1
 if (iterations == maxiter){
 converged <- TRUE
 }
}

Although we haven’t converged on a solution, or we have not reached the maximum
amount of iterations allowed when executing the function, we create the gradient0
and gradient1 variables, which correspond to the parameters theta0 and theta1
respectively. We then update the theta0 and theta1 parameters using the gradient
contained within the gradient0 and gradient1 variables. After this, we calculate the
error, and continue looping from while (converged == FALSE) until the stopping
condition has been reached:

 �output <- list("theta0" = theta0, "theta1" = theta1, "Cost" = cost,
"Iterations" = iterations)

 return(output)
}

Here, we’re running a simple linear regression where the y and x variables are initialized
randomly. When we run the code as stated, we get the results shown in Figure 3-6.

Chapter 3 ■ A Review of Optimization and Machine Learning

58

theta0 is the y-intercept, theta1 is the partial slope for the x variable, cost is the
sum of squares, and iterations is the number of iterations performed. Here, we observe
lower regression coefficients that are roughly the same baseline sum of squares error.
However, if we’re to use a learning rate that’s too large, we often will get an error because
the regression coefficients have become infinitely large. When the learning rate is too
small, we notice what’s shown in Figure 3-7.

We see that the algorithm doesn’t converge upon the minimum, but reaches a
feasible solution and is cut off by the loss tolerance we set. Incidentally, we’re also near
the maximum number of iterations allowed. The consequence of incorrectly choosing
an algorithm is relative to the context in which a given algorithm is being applied. But all

Figure 3-7.  Output of gradient descent with small learning rate

Figure 3-6.  Output of gradient descent without adaptive step function

Chapter 3 ■ A Review of Optimization and Machine Learning

59

users should be careful to evaluate the results they find on any machine learning or deep
learning algorithm. As such, it’s important that we are as confident as humanly possible
when choosing a solution.

In the next example, we run the same algorithm using an adaptive step size to
compare the performance:

#Gradient Descent with Adaptive Step
adaptiveGradient <- function(y = Y, x = X, alpha = .0001, epsilon = .000001,
maxiter = 300000){
 #Intializing Parameters
 theta0 <- 0
 theta1 <- 0
 cost <- sum(((theta0 + theta1*x) - y)^2)
 converged <- FALSE
 iterations <- 1

 #Gradient Descent Algorithm
 while (converged == FALSE){
 gradient0 <- as.numeric((1/length(y))*sum((theta0 + theta1*x) - y))
 gradient1 <- as.numeric((1/length(y))*sum((((theta0 + theta1*x) - y)*x)))

 t0 <- as.numeric(theta0 - (alpha*gradient0))
 t1 <- as.numeric(theta1 - (alpha*gradient1))

 delta_0 <- t0 - theta0
 delta_1 <- t1 - theta1
 if (delta_0 < theta0){
 alpha <- alpha*1.10
 } else {
 alpha <- alpha*.50
 }

Here, we apply the same gradient descent function, except now we apply the bold
driver approach so that we have an adaptive learning rate. The bold driver approach alters
the learning rate from one individual iteration to the next based on the prior result. Simply
stated, if the gradient increases from one iteration to the next, the learning rate increases
by 10%. If the gradient decreases, we decrease the learning rate by 50%. Readers can feel
free to alter these parameters should they choose, to experiment on the results received:

 theta0 <- t0
 theta1 <- t1
 error <- as.numeric(sum(((theta0 + theta1*x) - y)^2))
 if (as.numeric(abs(cost - error)) <= epsilon){
 converged <- TRUE
 }
 cost <- error
 iterations <- iterations + 1
 if (iterations == maxiter){

Chapter 3 ■ A Review of Optimization and Machine Learning

60

 converged <- TRUE
 }
 }
 �output <- list("theta0" = theta0, "theta1" = theta1, "Cost" = cost,
"Iterations" = iterations, "Learning.Rate" = alpha)

 return(output)
}

Upon executing this function, we receive the results shown in Figure 3-8.

Of the algorithms we have tested, and given our objective to minimize the cost and
the regression coefficient size, linear regression via gradient descent with adaptive step
size or the OLS method would be acceptable. As an interesting observation, the algorithm
converged upon this solution significantly faster than the gradient descent method with a
static learning rate did.

Newton’s Method
For instances in which we’re looking to minimize a quadratic function, Newton’s method
often proves useful. Newton’s method is a way to find the roots of a function, or where
f(x) is equal to 0. It was developed by Isaac Newton and Joseph Raphson. To calculate an
optimal point, we derive the equation

x x
f x

f x
k k

k

k

+ = −
()
()













′

′′
1

Figure 3-8.  Output of gradient descent with adaptive learning rate functions

Chapter 3 ■ A Review of Optimization and Machine Learning

61

where f' is the first derivative of a given function and f" is the second derivative of a given
function. This is known as the secant method. Newton’s method works particularly well if
the f’"(x) > 0, but if f”(x) < 0, it might not converge upon a global minimum. We know that
Newton’s function will always converge to a global optimum if the Hessian of the function
is positive semi-definite. Another drawback to Newton’s method is also that convergence
is not guaranteed if the starting point is considerably far from the global minimum. In the
instance that Newton’s method doesn’t converge upon the global minimum, there is a
heuristic that can be used to overcome this, covered next.

Levenberg-Marquardt Heuristic
The Levenberg-Marquardt (LM) algorithm is most applicable when a function isn’t twice
differentiable or its Hessian matrix isn’t positive-definite. The equation is given by the
following:

x x F x I gk k k
k

k+
−

= − ()+()1
1

µ

Consider a square matrix F that isn’t positive-definite. The eigenvalues of this matrix
may not be positive but are all real numbers. Consider a matrix

G F I= + µ

where µ ≥ 0. The eigenvectos of G are λ µ+ . Therefore, the following must be true:

Gv F I vi i= +()µ

= +Fv Ivi iµ

= +λ µi i iv v

= +()λ µi iv ,

With this modification, all the eigenvalues of G are therefore positive, and then G
would have to be positive definite. If μ is also sufficiently large enough, we can confirm
that the direction that Newton’s algorithm chooses will always be toward the direction of
steepest descent. The final modification to the algorithm will be to add in a step size:

x x F x I gk k k
k

k+
−

= − ()+()1
1

α µ

Chapter 3 ■ A Review of Optimization and Machine Learning

62

What Is Multicollinearity?
Multicollinearity is a problem that many a data scientist will come across in the
problems they solve. It’s a situation where the explanatory variables are nearly perfectly
correlated with other. In this situation, it becomes difficult to use linear regression
via OLS or gradient descent because the technique cannot accurately estimate the
regression coefficients, often resulting in inflated values for these parameters. This is
because it’s hard to distinguish the effect of one explanatory variable from another, and
subsequently each explanatory variable’s effect on the response variable. As a product of
multicollinearity, we observe the value of the regression coefficients changing, sometimes
drastically, each time we initialize a linear regression algorithm. Ultimately, this renders
traditional linear regression as a less preferable method for handling data that exhibits
these types of patterns.

Testing for Multicollinearity
Very highly positive regression coefficients are one of the first tell-tale signs of
multicollinearity. In addition to this, we should calculate the correlation of all the
explanatory variables with each other. Correlation coefficients of .95 1≤ ≤ρ should also
raise red flags in the mind of a data scientist. Specifically, though, there is a statistic that
we can use to determine whether we most definitely have multicollinearity in our data
set, called variance inflation factor.

Variance Inflation Factor (VIF)
The VIF statistic is calculated on a range from 0 ≤ ≤∞VIF . Typically, the rule of thumb is
that any VIF score that is > 5 indicates multicollinearity, and any score above 10 indicates
severe multicollinearity. The statistic is calculated by regressing a given explanatory
variable against the others and then using the result to calculate the coefficient of
determination, yielding the following:

VIF
R

j kj
j

=
−

= …
1

1
1

2
, , ,Where

Ridge Regression
To combat multicollinearity specifically, ridge regression was developed and is a useful
technique. Relevant to our discussions of norms earlier (L1 versus L2), ridge regression
uses an L2 norm to achieve an optimal solution. Here is the equation for ridge regression:

argmin
β

β λ βy X− +
2

2

2

Chapter 3 ■ A Review of Optimization and Machine Learning

63

One of the key distinctions in ridge regression is the tuning parameter λ, which
determines the degree to which the regression coefficients shrink. The technique gets the
name ridge due to the fact that the L2 norm forms a spherical or circular shaped region
where the optimal solutions for the regression coefficients exist are chosen along the
“ridge” of this shape. Visually, this often looks like Figure 3-9.

Least Absolute Shrinkage and Selection Operator
(LASSO)
Lasso is very similar to ridge regression except LASSO performs variable selection
while regressing the explanatory and response variables. The key differentiation
between LASSO and ridge regression is the fact that LASSO uses the L1 norm rather
than the L2 norm, giving the selection region a square or cubic shape depending on the
dimensionality of the data. In Figure 3-10, we can see the LASSO OLS estimate:

argmin
β

β λ βy X− +

Figure 3-9.  Ridge regression OLS estimates

Chapter 3 ■ A Review of Optimization and Machine Learning

64

Comparing Ridge Regression and LASSO
Both methods are highly useful for instances in which your data suffers from
multicollinearity, but in instances where you’re seeking to fit data as you would in a
simple linear regression, these methods should be avoided, and the gradient methods
along with the OLS method given earlier should be used. If you don’t have more than one
explanatory variable, these methods won’t be of use to you. Although that’s unlikely to be
the case in practical terms most times, it’s important to remember nonetheless.

Evaluating Regression Models
Beyond just building regression models, we need to find a way to determine how
accurately the results yielded from a model are, and ultimately choose the best one on
a case-by-case basis. In the case of regression, a useful method of evaluating machine
learning models is by bootstrapping. Typically, bootstrapping involves running different
regression models over several iterations using a data set that’s smaller than the original,
and with the original observations in randomized order, and then sampling several
statistics and comparing their values relative to the other models’ values. The process is
as follows:

	 1.	 Build several models.

	 2.	 Collect sample statistics that we use as evaluators of each
model over N iterations of the experiment.

Figure 3-10.  LASSO regression

Chapter 3 ■ A Review of Optimization and Machine Learning

65

	 3.	 Sample each of these evaluators and collect statistics upon
each iteration, such as:

		 a.	 Mean

		 b.	 Standard deviation

		 c.	 Max

		 d.	 Min

	 4.	 Evaluate the results and pick the model that’s most effective
given your objectives and situational constraints.

The rest of this section covers the evaluators you should pick during bootstrapping.

Coefficient of Determination (R 2)
As described in Chapter 2, the coefficient of determination is what we use to evaluate
how accurately a model explains variability in y through the variability in x. The higher
the R2 value, the better. That said, generally speaking, “good” R2 values should be in the
following range: .70 ≤ R2 ≤ .95. Anything lower than .70 should be viewed as generally
unacceptable, and anything higher than .95 should be examined to see if there is
overfitting in the model. Although this won’t change across a given iteration very much,
we still should evaluate this objectively across models.

Mean Squared Error (MSE)
The MSE measures the distance of a given predicted value of y from the average value
of the actual response variable. Our objective with any regression model is to minimize
this statistic as much as possible, so we will want to pick the model that has the lowest
MSE relative to the others being examined. This will be the evaluator that shows the most
variance across models and should be the one that gives us the most inferential power
with respect to which model we should choose.

Standard Error (SE)
In the case of a regression model, we would probably measure the standard error of a
given model. The objective we should have should be to have a standard error that is
as close to 0 as possible. Highly negative or highly positive standard error values are
generally undesirable.

Classification
Moving beyond the case of predicting specific values, our data observations often belong
to some class that we would like to label them as such. We refer to this paradigm of
problems as classification problems. To introduce readers to these types of problems, we
begin by addressing the most elementary of these algorithms: logistic regression.

http://dx.doi.org/10.1007/978-1-4842-2734-3_2

Chapter 3 ■ A Review of Optimization and Machine Learning

66

Logistic Regression
In addition to regression, one of the important tasks of machine learning is classification
of an observation. Although there are multinomial classification algorithms, we will start
by examining a binary classifier, a method often used as a baseline for the remainder of
the classifiers. Logistic regression gets its name from the function that powers it, known as
the logistic function, illustrated in Figure 3-11.

The function itself reads this this:

f x
e x() =

+






−

1

1

The intuition behind how we classify an observation is simple: we set a threshold for
a given f(x) value and then classify it as a 1 if it meets or exceeds this threshold and a 0 if
otherwise. In many contexts, the x variable will be replaced by a linear regression formula,
in which we model the data. As such, the equation for f(x), or the log odds, will be

π β β=
+ − +()

1

1 0 1e X

where π = log odds and π* is the given threshold. As for the threshold we establish, that
depends on what we would like to maximize: accuracy, sensitivity, or specificity.

Figure 3-11.  Visualization of logistic function

Chapter 3 ■ A Review of Optimization and Machine Learning

67

•	 Sensitivity/recall: The ability of a binary classifier to detect true
positives:

True Positive Rate
True Positives

Positives

True Positives

True P
= =

oositive False Negatives+

•	 Specificity: The ability of a binary classifier to detect true
negatives:

Specificity
True Negative

Negatives

True Negatives

True Negativ
= =

ees False Positives+

•	 Accuracy: The ability of a binary classifier to accurately classify
both positives and negatives:

Accuracy
True Positives True Negatives

Positives Negatives
=

+
+

In certain contexts, it may be more advantageous to magnify any of these statistics,
but that’s all relative to where these algorithms are being applied. For example, if you
were testing the probability of a phone battery combusting, you would probably want to
be certain that false negatives are minimized as much as possible. But if you were trying
to detect the probability that someone is going to find a match on a dating website, you
probably would want to maximize true positives. The relationship between the tradeoff of
these predictive abilities is most easily exemplified using an ROC curve, which shows how
altering the value of π* affects the classification statistics of the model.

Receiver Operating Characteristic (ROC) Curve
The ROC curve initially was used during World War II for the purposes of radar detection,
but its uses were soon considered for other fields, statistics being one of them. The ROC
curve displays the ability of a binary classifier to accurately detect true positives and
simultaneously check how inaccurate it is by displaying its false positive rate. This is
shown in Figure 3-12.

Chapter 3 ■ A Review of Optimization and Machine Learning

68

In the context of logistic regression, the evaluation of any specific model, given a
specific threshold for π, is ultimately determined by the area under the curve, or AUC. The
vertex of the plot is the .50 AUC score, which indicates that the model, should its score be
this, is no better at classifying than a random guess. Ideally, this AUC score would be as
close to one, but we generally accept anything ≥ .70 as acceptable.

Confusion Matrix
Another method of evaluating classification models is the confusion matrix, a
graphical representation of the classifiers predictions against the actual labels of a
given observations. From this visualization, we derive the values for the statistics
listed previously that ultimately help us accurately evaluate a classification model’s
performance. Figure 3-13 shows a visual example of a confusion matrix.

Figure 3-12.  Example ROC curve plot

Chapter 3 ■ A Review of Optimization and Machine Learning

69

Interpreting the values within a confusion matrix often is a subjective task that is
up to the reader to determine. In some instances, false positives, such as determining
whether users should buy a product or not, will not be as detrimental to solving the
problem at hand. In other cases, such as determining whether a car engine is faulty,
false positives may actually be detrimental. Readers should be conscious of the task they
are performing and tune the model to limit the false positives and/or false negatives
accordingly.

Limitations to Logistic Regression
Logistic regression can only predict discrete outcomes. It requires many of the
assumptions necessary for ordinary linear regression, and overfitting of data can become
quite common. In addition to this, classification with logistic regression works best
when we have data that is clearly separable. For these reasons, in addition to the fact that
there are more sophisticated techniques available, it is a common modeling practice to
consider the logistic regression model to be the baseline by which we juxtapose other
classification methods and observe the nuances.

Moving forward, we will look at a simple example using logistic regression. This
data set will be referenced in later chapters, and in Chapter 10 in detail, for those who are
curious about the process by which this model was produced.:

#Code Redacted, please check github!
#Logistic Regression Model
lr1 <- glm(data[,1] ~ data[,2] + data[,3] + data[,4] + data[,5] + data[,6]
+ data[,7],
 family = binomial(link = "logit"), data = data)

#Building Random Threshold
y_h <- ifelse(lr1$fitted.values >= .40, 1, 0)

Figure 3-13.  Confusion matrix

http://dx.doi.org/10.1007/978-1-4842-2734-3_10

Chapter 3 ■ A Review of Optimization and Machine Learning

70

#Construct ROC Curve
roc(response = data[,1], predictor = y_h, plot=TRUE, las=TRUE,
 �legacy.axes=TRUE, lwd=5,

main="ROC for Speed Dating Analysis", cex.main=1.6, cex.axis=1.3,
cex.lab=1.3)

The ROC curve for our model is shown in Figure 3-14.

Using the preceding code, we have an area under the curve of .7353. Given the
threshold that we set before, this model’s performance would be considered acceptable,
but it should likely undergo more tuning.

Support Vector Machine (SVM)
Among the more sophisticated machine learning models available, support vector
machines are a binary classification method that has more flexibility than the logistic
regression model in that they can perform non-linear classification. This is performed
via its kernel functions, which are equations that orthogonally project the data onto a
new feature space, and the classification of the objects are performed as a product of two
hyperplanes constructed by a norm (See Chapter 2).

Figure 3-14.  ROC curve for logistic regression example

http://dx.doi.org/10.1007/978-1-4842-2734-3_2

Chapter 3 ■ A Review of Optimization and Machine Learning

71

In the case of liner SVMs, we take in as our inputs a response variable, Y, and an
explanatory variable(s), x. We orthogonally project this data into feature space, such that
we form the hyperplane that separates the data points. The size of these hyperplanes is
determined by the Euclidean norm of the weights, or w, vector in addition to an upper
bound and lower bound, respectively denoted as the following:

wx b+ =1

wx b+ = −1

We keep reiterating this process until we have reached a norm of w that maximizes
the separation between the two classes. The separation of the classes is maximized by
minimizing ||w||, being that the size of the hyperplane is given by the following:

2

w

The following constraints also prevent us from allowing observations to fall in
between the two hyperplanes:

wx b+ ≥ =1 1, if y

wx b+ ≤ − = −1 1, if y

The observations that ultimately fall on the boundaries of the hyperplane are the
most important, as they are the “support vectors” that define the separation between
classifications. This transformation is shown in Figure 3-15.

Figure 3-15.  Orthogonal transformation of data via kernel function

Chapter 3 ■ A Review of Optimization and Machine Learning

72

The optimization problem formed from these constraints in addition to objective of
the SVM is given by the following:

Minimize w subject to for i ny wx bi +() ≥ = …1 1, , ,

Types of Kernels
To expand the flexibility of SVMs, different kernels have been developed. Among them
are the following:

•	 Polynomial

•	 Gaussian radial basis function

•	 Hyperbolic tangent

Sub-Gradient Method Applied to SVMs
A sub-gradient of a function is defined as a generalization of a derivative to a function that
are not differentiable. Simply stated, it is the slope of a line that goes through the derivative
of a function, but falls below the derivative. Modern modifications to the SVM algorithms
have yielded better performing classification models when dealing with data with more
than 10^5 features and 10^5 observations. We define the optimization problem as

f w b
n

y wx b w
i

n

i,() = − +()()







 +

=
∑1 0 1

1

2
max , λ

where f is a convex function of w and b. Moreover, this allows us to use gradient decent
methods because they work particularly well on convex sets. Given a cost function C(w),
defined as the actual classification minus the predicted classification, we use the gradient
descent formula therefore as follows:

min max ,
w

i

n

i id
y f x w

∈ =
∑ − ()()+




1

2
0 1

min max ,
w

i

n

i iw w
n

y f x () = + − ()()
=
∑λ

2

1
0 1

2

1

The sub-gradient step size selection method is similar to the bold driver approach
described earlier in this chapter. As always, the context in which an algorithm is being
applied should ultimately decide which method is used, not just which performs better.

Chapter 3 ■ A Review of Optimization and Machine Learning

73

Extensions of Support Vector Machines
A regression method proposed in 1996 by Vladimir Vapnik, Harris Druck, Christopher
Burges, Linda Kaugman, and Alexander Smola is among the more popular extensions
of SVMs. The difference is that in SVR, we don’t care about the observations that fall
within the hyperplane. Instead, we only modify the shape of the hyperplane in response
to points that fall outside the loss tolerance zone, with the objective of minimizing the
amount of these points that fall out of this zone. The type of regression performed can be
altered again by the same kernel functions listed earlier. In addition to this, an alternative
to K-means clustering which uses the Gaussian kernel as the activation function for
orthogonal projection. Here, the algorithm searches to make the hyperplane such that
the smallest sphere that encloses the image of the data defines a given cluster. Clustering
algorithms are covered later in this chapter.

Limitations Associated with SVMs
The main problem with SVMs arises from what is arguably the key to why they are so
powerful: kernel functions. Determining the proper kernel to use is often stated as the
largest drawback to this technique. When delving deeper into this aspect of algorithm
training, specifically the selection of the loss parameter and the Gaussian kernel’s width
parameter is not apparently obvious and is highly subject to the context in which the
algorithm is being used. Second, although SVMs do perform well on large data sets, they
are a computationally expensive method and require sufficiently good hardware when
applied in an industry setting. As such, it does not always make sense to use SVMs in
contexts outside of research, or any context where real-time data would be analyzed.

The following is a quick example of SVMs used on the iris data set:

#Code Redacted, please check github!
require(LiblineaR)
require(e1071)

#SVM Classification
output <- LiblineaR(data=s, target=y_train, type = 3, cost = heuristicC(s))

#Predicted Y Values
y_h <- predict(output, s, decisionValues = TRUE)$predictions

#Confusion Matrix
confusion_matrix <- table(y_h, y_train)
print(confusion_matrix)

When executing our code, it yields the confusion matrix shown in Figure 3-16.

Chapter 3 ■ A Review of Optimization and Machine Learning

74

Machine Learning Methods: Unsupervised
Learning
Moving beyond the paradigm in which we know the answers we’re trying to predict is
the more ambiguous section of deep learning, in which we are trying to make inferences
based off of our algorithms. This specific subset of problems is known as being a part
of unsupervised learning, or problems where we don’t know a priori what the answers
should be.

K-Means Clustering
Until now, we’ve spoken primarily about supervised learning, but another important
aspect of machine learning is the use of algorithms in unsupervised learning cases.
Typically, unsupervised learning can be performed as an exploratory research method, or
as a preliminary step prior to the primary component of the experiment. One of the best
examples of unsupervised learning is the K-means clustering algorithm. The motivation
behind this algorithm is to find observations that are similar based on the distance they
are away a cluster center.

Assignment Step
Here, we take the observations of data and give an initial set of k means by calculating
the means of three random observations within the data. From this point, we assign each
observation to the cluster centers based on which assignment yields the smallest within
cluster sum of squares, determined by the Euclidean norm between the observation’s
mean and the cluster center mean

S x x m x m j j ki
t

p p i
t

p j
t= − ≤ − ∀ ≤ ≤{ }: ,

2 2
1

where S = cluster center and x
p
 is an observations mean.

Figure 3-16.  Confusion matrix for support vector machine

Chapter 3 ■ A Review of Optimization and Machine Learning

75

Update Step
We then recalculate the cluster mean by taking the mean of the observations within the
center and then reiterate over these two steps until reassignments stop:

m
S

xi
t

i
t

x S
j

j i
t

+

∈
=1 1 ∑

Limitations of K-Means Clustering
The major problem with K-means clustering is that the solution reached is often
dependent on where the means are initialized, and therefore convergence upon a global
minimum isn’t guaranteed. Also, depending on the variation of K-means chosen, the time
taken until convergence may also not be particularly fast.

Here’s a brief example of K-means clustering:

#Upload data
data <- read.table("http://statweb.stanford.edu/~tibs/ElemStatLearn/
datasets/nci.data", sep ="", header = FALSE)
data <- t(data)
k_means <- c()
k <- seq(2, 10, 1)
for (i in k){
 k_means[i] <- kmeans(data, i, iter.max = 100, nstart = i)$tot.withinss
}

clus <- kmeans(data, 10)$cluster
summ <- table(clus)
#Removing NA Values
k_means <- k_means[!is.na(k_means)]
#Plotting Sum of Squares over K
plot(k, k_means, main ="Sum of Squares Over K-Clusters", xlab = "K
Clusters", ylab= "Sum of Squares",
 type = "b", col = "red")

Typically when performing K-means clustering, the most difficult part is determining
which value of k we should pick. Typically, the more clusters one has, the lower the
sum of squares within a cluster between its observations and the cluster centers will
be. However, the more clusters that are present, the less informative these clusters are.
Therefore, the challenge becomes a tradeoff between sum of squares over the K clusters
and as least clusters as possible to make the observations reasonably differentiable.
Figure 3-17 shows a plot that aids us in that effort.

Chapter 3 ■ A Review of Optimization and Machine Learning

76

In the plot in Figure 3-17, we notice that our sum of square decreases dramatically in
the beginning, but we see that a tapering off toward the end in the value changes. As such,
it’s reasonable for us to choose a value between 6 and 8, preferably closer to, if not, 6. This
follows the objectives laid out in the prior paragraph and would yield us with actionable
insights, or create a feature for a data sight that contains significant differences for a
classification or regression algorithm to detect.

Expectation Maximization (EM) Algorithm
Popular within the paradigm of unsupervised learning, EM algorithms can be used for
a multitude of purposes such as classification or regression. Most specifically of use to
the user, it can be used to impute values that are missing within a data set. We will show
this capability in Chapter 11. Regardless, the EM algorithm is a probabilistic model,
which distinguishes it from many machine learning models, which often tend to be
deterministic. The algorithm uses the log-likelihood function to estimate the parameter
and then maximizes the expected log-likelihood found.

Figure 3-17.  Within cluster sum of squares over K clusters

http://dx.doi.org/10.1007/978-1-4842-2734-3_11

Chapter 3 ■ A Review of Optimization and Machine Learning

77

Expectation Step
Consider a set of unknown values Z, which is a subset of the data set X. We calculate the
log-likelihood of a parameter with regard to the conditional distribution of Z given X. The
following equation yields the expected value of the maximum likelihood estimate of the
parameter:

L X p X p X Zzθ θ θ;() = () = ()| , |∑

Q E L X Zt

Z X tθ θ θ
θ

| log ; ,
| ,() = () ()

Maximization Step
In this step, we seek to maximize the probability of the given parameter we are analyzing.
The equation is given by the following:

θ θ θ
θ

t tQ+ = ()1 argmax |

Limitations to Expectation Maximization Algorithm
The EM algorithm also tends to be very slow to converge and doesn’t yield the asymptotic
variance-covariance matrix of the MLE. In addition to this—similar to the same limitation
with naïve Bayes classifiers, because the MLE estimator assumes feature independence—
it would be ill advised to use this method if the features being analyzed are in fact not
independent. The following is an example of the EM algorithm used for classification via
clustering:

#Expectation-Maximization Algorithm for Clustering
require(MASS)
require(mclust)
y_h <- Mclust(x_train, G = 3)$classification
print(table(y_h, y_train))
plot(Mclust(x_train, G = 3), what = c("classification"), dimens=c(1,3))

When executing our code, it yields the plot shown in Figure 3-18.

Chapter 3 ■ A Review of Optimization and Machine Learning

78

Decision Tree Learning
Commonly used across a variety of fields for the purpose of data mining, decision trees
yield a relatively simple method of uncovering insights hidden below the surface of data.
There are broadly two types of decision tress, and they typically are used for regression
and classification. Decision trees are constructed by creating a rule that determines
which direction the decision flows. The idea is that you use a funnel methodology in
which the first rule is the broadest and you break down the questions into subsets until
the final “leaf” is the most granular aspect determined.

The benefits often associated with decision trees is that overall, they are relatively
easy to understand and generally quite effective. In addition, decision trees can handle
missing data better than some machine algorithms can without replacing or changing
the data (we can just average the values or classifications), and they are quick to compute
final values relative to other modeling techniques. Above all, there are varieties of
methods that can be used to help the trees learn effectively, and they can model data well
when traditional regression methods cannot.

Figure 3-18.  Iris data clusters from EM algorithm clustering

Chapter 3 ■ A Review of Optimization and Machine Learning

79

Classification Trees
Classification trees are similar to regression trees. The splits are usually determined by
binary variables, but they can be both numerical and categorical. In addition to this,
classification trees can make two types of predictions: 1) point prediction, which simply
denotes the class, and 2) distributional prediction, which gives a probability for each
class. For probability forecasts, each terminal node in the tree yields a distribution over
the classes. If the leaf corresponds to the sequence of answers, given by A = a, B = b, …
Q = q, then the following equation yields the probability:

Pr | , , ,Y y A a B b Q q= = = … =()

To evaluate the classification tree, the same methods of evaluating different classification
models as described earlier are used. But we also introduce the concept of average loss.
Simply stated, some errors are likely to cause greater “damage” toward accurately reaching the
correct classification. The average loss formula is given by the following:

Loss Y j X x= =() = = =()| Pr |∑ i ijL Y i X x

Moving beyond this, we can determine whether the model made an incorrect
classification in cases where it was or was not uncertain using the normalized negative
log-likelihood. The formula for it is given by

L data Q
n

logQ Y y X xi
n

i i, |() = − = =()1
∑

where Q(Y = y|X = x) is the conditional probability the model predicts. In this context, L
is also referred to as cross-entropy. If perfect classification were possible, L would be 0.
If there is some irreducible uncertainty in the classification, the best possible classifier
would give L = H[Y|X] , the conditional entropy of Y given X. Less than ideal predictors
have L > H[Y|X]. Here is an example of a classification tree:

require(rpart)
#Classification Tree
classification_tree <- rpart(y_train ~ x_train[,1] + x_train[,2] + x_
train[,3] + x_train[,4]
 +x_train[,5] + x_train[,6], method = "class")
pruned_tree <- prune(classification_tree, cp = .01)

#Data Plot
plot(pruned_tree, uniform = TRUE, branch = .7, margin = .1, cex = .08)
text(pruned_tree, all = TRUE, use.n = TRUE)

When executing our code, we yield the plot shown in Figure 3-19.

Chapter 3 ■ A Review of Optimization and Machine Learning

80

The confusion matrix accompanying this model is shown in Figure 3-20.

Regression Trees
The primary goal in this model is to maximize the probability of landing up at a given leaf
as a product of the variables being analyzed. We seek to maximize the information we get
about the response variable upon each split we approach. This is modeled by

I C Y:[]

where I is information, C is the variable that determines the leaf we move toward, and Y is
the response variable

I Y A A a I Y A a;[]= =() =[]∑ a Pr ;

where,

I Y A a H Y H Y A a; |=[]= []− =[]

Figure 3-19.  Classification tree splits based on Classification tree model fitted above

Figure 3-20.  Confusion matrix for classification tree

Chapter 3 ■ A Review of Optimization and Machine Learning

81

where

H X E I X E P X() = ()  = − ()() ln

Regardless of whether we are looking at continuous or discrete variables, we
calculate the sum of squares the same way

S y m
x leaves T i c

i c= −()
∈ () ∈
Σ Σ 2

where m
n

y i cc
c

i= ∈
1
∑ , , the prediction for leaf c.

Uncertainty in prediction using regression trees, similar to the uncertainty seen
in classification trees, is an issue worth considering when employing these models.
Primarily, these uncertainties are imprecise estimates of the conditional probabilities.
The tree is also actively changing as the response values shift. We would ideally like a
measure of how different the tree could have been if we drew a different sample from the
same distribution. This can be estimated using non-parametric bootstrapping. Assuming
data (x

1
, y

1
), (x

2
, y

2
), …, (x

n
, y

n
), we draw a random set of integers J

1
, J

2
, …, J

n
, independently

and uniformly from the numbers 1:n, with replacement. Then we set

′ ′() = ()X Y x yi i J Ji i
, ,

where we treat this bootstrapped sample just like the original data and fit a tree to it.
Repeated over many iterations, we get a bootstrap sampling distribution of trees. This
approximates the actual sampling distribution of regression trees. The spread of the
prediction of our bootstrapped trees around the original indicates the distribution.

Limitations of Decision Trees
Typically, the most difficult parts of building a decision tree are choosing the rule that
creates the best decision tree and choosing a tree size that isn’t overly complex, which
leads to overfitting in the training set, or one that doesn’t yield any actionable insights at
all. To make things worse, it’s difficult to tell when exactly overfitting occurs just from the
training error alone. To mitigate these problems, it is generally encouraged that decision
trees have a sufficient training example size. Ideally, the model fits to the data reasonably
well, and the rules employed to determine splits in direction should not be overly
complex. The stopping criterion ultimately controls when we reach a leaf. Examples of
often-used rules are to stop when the information yielded decreases below a certain user-
determined threshold or when the “child” of the “parent” node yields a sufficiently small
enough set of data points. Moving forward from this however, decision trees are relatively
simple models that don’t always perform very well on complex data with respect to
regression problems, and also don’t perform well on categorical data where there are
multiple levels for each category.

Chapter 3 ■ A Review of Optimization and Machine Learning

82

Ensemble Methods and Other Heuristics
For instances in which standard machine learning algorithms fail, a significant boost in
accuracy can be achieved from algorithms that are in actuality combinations of multiple
algorithms. We refer to these as ensemble methods.

Gradient Boosting
Originally developed by Leo Breiman, gradient boosting is a technique used on regression
and classification problems for the purposes of producing a superior model from weaker
models. It builds the model iteratively, and the optimization problem is to minimize the
gradient of this function. Let’s take a model F, which we expect to predict a value y

h
, with

the objective of minimizing the squared error. Let M be the number of boosting iterations
we want to go under, where 1 ≤ m ≤ M. We assume that at the outset of our experiment we
will have a model F

m
, which we seek to improve. Therefore:

F x F x h x y
m m() = () + () =+1

h x y F x
m() = − ()

Gradient boosting seeks to make Fm+1 more correct than the previous model. Other

loss functions that have been proposed are the squared error loss function given by

h x
n

h y
x

i i() = −()1

2

2
∑ θ

where

∇ () = −()h x
n

h y
x

i1
∑ θ

where n = the number of observations within data set X.

Gradient Boosting Algorithm
	 1.	 Define the optimization problem as

F E L y F x
F

x y
*

,argmin [,= ()()

where L(y, F(x)) is some differentiation loss function, such as
the gradient of the squared loss as shown earlier.

Chapter 3 ■ A Review of Optimization and Machine Learning

83

	 2.	 Calculate the residuals as given by the following equation for
m = 1, …, M:

r
L y F x

F xim
i i

i F x F x
m

= −
∂ ()()

∂ ()










 ()= () −

,

1

	 3.	 Use the initial model with a training set to iteratively improve
the performance.

	 4.	 Calculate γ
m

 via the following equation:

γ γ
γm i i m m ii

n L y F x h xargmin ,∑ () + ()()−1

	 5.	 Repeat 2–4 until convergence.

Random Forest
The final ensemble method I will address in this chapter is that of the random forest.
Simply stated, random forests are combinations of several decision trees, such that each
decision tree can be considered unique from the others with respect to the features it
evaluates at a given branch. Although the length of these trees is homogenous, each tree’s
decision is independent from one another. The value we choose for a given observation
typically is the average value with respect to all the trees in the case of regression, or it’s the
average (or most prevalent) observation with respect to all of the trees in classification.

Limitations to Random Forests
Random forests’ main limitations is the fact they, similar to the trees they are made of,
have a tendency to overfitting. The same techniques I recommended for use on decision
trees, such as pruning and preemptively limiting growth, should be used here to limit the
probability of a tree overfitting.

Bayesian Learning
Built off of Bayes’ theorem, and ultimately employed in many machine learning and
natural language processing models, Bayesian learning uses representations of random
variables and their conditional dependencies via a directed graph. Bayesian learning
is used in situations such as determining the sentiment of a word given the context it is
within, and finding the probability of a name being that of a female or a male based on
the genders it typically is prescribed to within a test set.

Chapter 3 ■ A Review of Optimization and Machine Learning

84

Naïve Bayes Classifier
A simple application of Bayes’ theorem is to the case of classification. Naïve Bayes
classifier uses conditional probability to determine the likelihood of an event. Let’s say we
have a vector z z z z= …[]1 1 3, , , and we want to determine the probability of event A. We

would model this equation as

P A z
P z A P A

P z
|

|() = () ()
()

where P(A|Z) is defined as the posterior probability, P(z|A) is the prior probability, P(A)
is the likelihood, and P(z) is the probability of the instance occurring (this can almost
always be ignored). Now we want to use this formula to properly be able to classify
observations. To this, we turn this into an optimization problem, given by the following
equation:

ˆ arg max |
, ,

y P A P z A
k K

k i k= () ()
∈ …{ } ∏
1

We assign a value to y based on the value that maximizes the probability of some
event A. Although this isn’t the only way to use a naïve Bayes classifier, it’s an example of
one of the more common ways Bayes’ theorem is applied for the purpose of classification.

Limitations Associated with Bayesian Classifiers
Bayesian classifiers’ biggest limitation lies mostly the fact that it assumes the independent
nature of features, which won’t always be the case in many contexts in which we’re
analyzing data. Once it’s established that feature independency doesn’t exist, we can’t use
this classifier at all:

#Bayesian Classifier
require(e1071)

#Fitting Model
bayes_classifier <- naiveBayes(y = y_train, x = x_train , data = x_train)
y_h <- predict(bayes_classifier, x_train, type = c("class"))

#Evaluating Model
confusion_matrix <- table(y_h, y_train)
print(confusion_matrix)

When executing the preceding code, the confusion matrix shown in Figure 3-21 is
yielded.

Chapter 3 ■ A Review of Optimization and Machine Learning

85

Final Comments on Tuning Machine Learning
Algorithms
One of the more difficult parts of practicing machine learning algorithms that I’ve not
addressed yet is the concept of parameter tuning. The amount of parameters one can tune
depends on which algorithm is being employed, but nonetheless this is a challenge that
is noted across the entire discipline. We have discussed why it’s important to ensure that
overfitting doesn’t occur so we achieve as robust a solution as possible. Generally speaking,
robustness is reflected by stability of prediction power from one data set to the next, and
overfitting is reflected by stark drop-offs in predictive power from on data set to the next. I’ll
now discuss how to achieve this robustness via methods in the following sections.

50/25/25 Cross-Validation
Users should use a validation set to do the parameter tuning against, which should be 50%
of the size of the total data set. Then the users should create two training sets: one will be
used to train their tuned algorithm, and the other to test the degree of robustness/check for
overfitting. Other percentage splits can be examined to see the difference in performance.

Tune One Parameter at a Time
Should the reader be using the packages and not a custom implementation of an
algorithm, there will likely be parameters that are set to default values. Trying to change
more than one parameter at a time is difficult not only for the sake of the results of the
algorithm being yielded in a timely fashion, but also due to the fact that it’s hard to
separate the contribution of specific parameters from the degree of change in the output.
For example, random forests get a great deal of their power from the largeness of the
individual trees as well as from the amount of trees allowed to have within a given model.
Augmenting both of these at the same time distorts the ability to which we can properly
tune the algorithm as a whole and ultimately can lead to under or overfitting.

Figure 3-21.  Confusion matrix for Bayesian classifier example

Chapter 3 ■ A Review of Optimization and Machine Learning

86

Using Search Algorithms to Tune Machine Learning Parameters
Readers who want to take a more advanced approach are advised to pay close attention
in Chapter 8 where we discuss in depth search algorithms that can be used to choose
machine learning algorithms. Although still a developing area of research, there has been
significant success achieved with using GridSearch and other local search algorithms
to choose better algorithms by lowering an error statistic of a regression algorithm or
increasing an AUC score yielded by a classification algorithm.

Reinforcement Learning
Reinforcement learning differs from supervised learning in that the labels we are fitting
against in supervised learning problems are never given. Instead, there is a focus on
finding the proper balance between leveraging existing knowledge in the model and
knowledge that we want the model to find from the environment which is not already
known. Integral to the field of reinforcement learning is this subtopic of probability
theory. In these type of problems, we assume there is a gambler near a group of slot
machines who has to decide which machines to play, how many times to play each
machine, and in which order to play the machines. When played, each machine provides
a random reward from a probability distribution specific to a given machine. The
objective is to maximize the amount of money that the gambler will have taken from
this period of gambling. Moving forward, we can generally describe the reinforcement
learning problem as one that requires an intelligent exploration of an environment, in
reference to the same objectives described in the multi-armed gambler approach.

Distinguishing reinforcement learning from supervised and unsupervised methods
is the fact that the actions we take significantly affect the subsequent information we get,
hence the emphasis on making the best possible decision upon each iteration of a given
algorithm. The basic algorithm is described as following:

•	 Agent

1.	 Execute a given action

2.	 Observe a certain outcome

3.	R eceive a reward, usually modeled in the form of a scalar

•	 Environment

1.	R eceives action performed by the agent

2.	 Outputs an observation as well as a scalar reward

http://dx.doi.org/10.1007/978-1-4842-2734-3_8

Chapter 3 ■ A Review of Optimization and Machine Learning

87

We define history as the sequences of observations, rewards, and actions that occur with
respect to an agent and a given environment, denoted as H O R A O R At t t t= … − − −1 1 1 1 1 1, , , , , , . All
subsequent observations, rewards, and actions are influenced by the history as it exists in a
given experiment. This is what we define as the state, denoted as S f Ht t= () . The state of
the environment is not visible to the agent, so it doesn’t allow a bias for the actions an agent
may pick. In contrast, the state of the agent is internal. The information also has a state,
which is described as a Markov process. It should be noted that because this is an
introductory book to deep learning, the application of reinforcement learning won’t be as in
depth as it would be in more advanced books. That said, it is my hope that from reading this
book, those who currently find reinforcement learning problems inaccessible will be able to
tackle these problems upon attainment of a solid understanding of the concepts addressed
during the course of this text.

Summary
We now have reached the end of our review of the necessary components of optimization
and machine learning. This chapter, as well as the prior chapter, should be used as a
reference point for understanding some of the more complex algorithms we shall discuss
in the chapters moving forward. Now, we’ll progress into discussing the simplest model
within the paradigm of deep learning: single layer perceptrons.

89© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_4

CHAPTER 4

Single and Multilayer
Perceptron Models

With enough background now under our belt, it’s time to begin our discussion of neural
networks. We’ll begin by looking at two of the commonest and simplest neural networks,
whose use cases revolve around classification and regression.

Single Layer Perceptron (SLP) Model
The simplest of the neural network models, SLP, was designed by researchers McCulloch
and Pitts. In the eyes of many machine learning scientists, SLP is viewed as the beginning
of artificial intelligence and provided inspiration in developing other neural network
models and machine learning models. The SLP architecture is such that a single neuron is
connected by many synapses, each of which contains a weight (illustrated in Figure 4-1).

Figure 4-1.  Visualization of single perceptron model

Chapter 4 ■ Single and Multilayer Perceptron Models

90

The weights affect the output of the neuron, which in the example model will be a
classification problem. The aggregate values of the weights multiplied by the input are
then summed within the neuron and then fed into an activation function, the standard
function being the logistic function:

Let the vector of inputs x x x xn

T= ¼[]1 2, , , and the vector of weights w w w wn= ¼[]1 2, , , .

The output of the function is given by

y f x wT= (),

where the activation function, when using a logistic function, is the following:

f x
e x() =

+ -

1

1

Training the Perceptron Model
We begin the training process by initializing all the weights with values sampled
randomly from a normal distribution. We can use a gradient descent method to train
the model, with the objective being to minimize the error function. We describe the
perceptron model as

ŷ f x w x wT

i

n

i i= () = æ

è
ç

ö

ø
÷å, s

where
s =

+ -

1

1 e x
,

ˆ
,*

y
if y

elsewhere
=

³ì
í
ï

îï

1

0

p

where π* = the threshold for log odds as described for logistic regression in Chapter 3.

Widrow-Hoff (WH) Algorithm
Developed by Bernard Widrow and Macron Hoff in the late 1950s, this algorithm is used
to train SLP models. Though similar to the gradient method used to train neural networks
(mentioned earlier), the WH algorithm uses what is called an instantaneous algorithm,
given by

w k w k
E

wi i
i

+() = ()- ¶
¶

æ

è
ç

ö

ø
÷1 1h

http://dx.doi.org/10.1007/978-1-4842-2734-3_3

Chapter 4 ■ Single and Multilayer Perceptron Models

91

¶
¶

= - ()() -
¶ ()
¶

æ

è
ç

ö

ø
÷

=
åE

w
h y k

y k

wi m

M

i
x

1

2
1
1

q

= - ()() - ()()
=
å
m

M

ih y k x k
x

1
q

= () ()
=
å
m

M

ik x k
1

d

where
d qk h y k

x
() = - ()()

We can therefore summarize the preceding equations into the following:

w k w k x x ki i i+() = ()+ () ()1 hd

In this manner, we have the same optimization problem that we would in any
traditional gradient method. Our goal is to minimize the error of the model by adjusting
the weights applied to the inputs of data via gradient descent. With a classification
problem in mind, let’s use logistic regression as our baseline indicator while also
comparing it to a fixed rate perceptron indicator and the bold driver adaptive gradient
using the WH algorithm.

Limitations of Single Perceptron Models
The main limitation of the SLP models that led to the development of subsequent neural
network models is that perceptron models are only accurate when working with data that
is clearly linearly separable. This obviously becomes difficult in situations with much
more dense and complex data, and effectively eliminates this technique’s usefulness from
classification problems that we would encounter in a practical context. An example of this
is the XOR problem. Imagine that we have two inputs, x

1
 and x

2
 for which a response, y, is

given, such that the following is true:

x1 x2y

0 0 0

1 0 1

0 1 1

1 1 0

Chapter 4 ■ Single and Multilayer Perceptron Models

92

From the following example, we can see that the response variable is equal to 1 when
either of the explanatory variables is equal to 1, but is equal to 0 when both explanatory
variables are equal to each other. This situation is illustrated by Figure 4-2.

Figure 4-2.  XOR problem

Let’s now take a look at an example using SLP with data that is not rigidly linearly
separable to get an understanding of how this model performs. For this example, I’ve
created a simple example function of a single layer perceptron model. For the error
function, I used 1 minus the AUC score, as this would give us a numerical quantity such
that we could train the weight matrix via back-propagation using gradient descent.
Readers may feel free to use the next function as well as change the parameters.

We begin by setting some of the same parameters that we did with respect to our
linear regression algorithm performed via gradient descent. (Review Chapter 3 if you
need to review the specifics of gradient descent and how it’s applied for parameter
updating.) The only difference here is that we’re using a different error function than the
mean squared error used in regression:

singleLayerPerceptron <- function(x = x_train, y = y_train, max_iter = 1000, tol = .001){
#Initializing weights and other parameters
 weights <- matrix(rnorm(ncol(x_train)))
 x <- as.matrix(x_train)
 cost <- 0
 iter <- 1
 converged <- FALSE

http://dx.doi.org/10.1007/978-1-4842-2734-3_3

Chapter 4 ■ Single and Multilayer Perceptron Models

93

Here, we define a function for a single layer perceptron, setting parameters similar
to that of the linear regression via the gradient decent algorithm defined in Chapter 3. As
always, we cross-validate (this section of code redacted, please check GitHub) our data
upon each iteration to prevent the weights from overfitting. In the following code, we
define the algorithm for the SLP described in the preceding section:

 while(converged == FALSE){
 #Our Log Odds Threshold here is the Average Log Odds
 weighted_sum <- 1/(1 + exp(-(x%*%weights)))
 y_h <- ifelse(weighted_sum <= mean(weighted_sum), 1, 0)
 error <- 1 - roc(as.factor(y_h), y_train)$auc
}

Finally, we train our algorithm using gradient descent with the error defined as 1 – AUC.
In the following code, we define the processes that we repeat until we converge upon an
optimal solution or the maximum number of iterations allowed:

#Weight Updates using Gradient Descent
#Error Statistic := 1 - AUC
if (abs(cost - error) > tol | iter < max_iter){
 cost <- error
 iter <- iter + 1
 gradient <- matrix(ncol = ncol(weights), nrow = nrow(weights))
 for(i in 1:nrow(gradient)){
 gradient[i,1] <- (1/length(y_h))*(0.01*error)*(weights[i,1])
 }
(Next section redacted, please check github!)

As always, it’s useful for readers to evaluate the results of their experiment. Figure 4-3
shows the AUC score summary statistics in addition to the last AUC score with its
respective ROC curve plotted:

 #Performance Statistics
 cat("The AUC of the Trained Model is ", roc(as.factor(y_h), y_train)$auc)
 cat("\nTotal number of iterations: ", iter)
 curve <- roc(as.factor(y_h), y_train)
 plot(curve, main = "ROC Curve for Single Layer Perceptron")
}

http://dx.doi.org/10.1007/978-1-4842-2734-3_3

Chapter 4 ■ Single and Multilayer Perceptron Models

94

Summary Statistics

 Mean Std.Dev Min Max Range
1 0.4994949 0.03061466 0.3973214 0.6205357 0.2232143

Note that the AUC scores are considerably poor, with the average rating being no
better than guessing. Sometimes the algorithm here reaches slightly better results, but
this would still likely be insufficient for purposes of deployment. This is likely due to the
fact that the classes aren’t so clearly linearly separable, leading to misclassification with
updates to the weight matrix upon each iteration.

Now that we’ve seen the limitations of the SLP, let’s move on to the successor to this
model, the multi-layer perceptron, or MLP.

Multi-Layer Perceptron (MLP) Model
MLPs are distinguished from SLPs by the fact that there are hidden layers that affect the
output of the model. This distinguishing factor also happens to be their strength, because
it better allows them to handle XOR problems. Each neuron in this model receives an
input from a neuron—or from the environment in the case of the input neuron. Each
neuron is connected by a synapse, attached to which is a weight, similar to the SLP. Upon
introducing one hidden layer, we can have the model represent a Boolean function, and
introducing two layers allows the network to represent an arbitrary decision space.

Figure 4-3.  ROC curve

Chapter 4 ■ Single and Multilayer Perceptron Models

95

Once we move past the SLP models, one of the more difficult and less obvious
questions becomes what the actual architecture of the MLP should be and how this
affects model performance. This section discusses some of the concerns the reader
should keep in mind.

Converging upon a Global Optimum
By the design of the model, MLP models are not linear, and hence finding an optimal
solution isn’t nearly as simple as it would be in the case of an OLS regression. In MLP
models, the standard algorithm used for training is the back-propagation algorithm, an
extension of the earlier described Widrow-Hoff algorithm. It was first conceived in the 1980s
by Rumelhart and McClelland and was seen as the first practical method for training MLP
networks. It’s one of the original methods by which MLP models were trained by using
gradient descent. Let E be the error function for the multi-layer network, where

E k h k y k
i

M

i
i

() = () - ()()
=
å12 1

2

q

We represent the weighted sum value of the individual neurons that is inputted into
the hidden layer by the following:

s k w x k
h j

i

M

h j i i() = ()
=
å, , ,

1

Similarly, we represent the output from the hidden layer to the output layer as the
following:

s k w o k
o j

i

H

o j i h i() = ()
=
å, , , ,

1

With the weights represented by the following:

w k w k
E k

wij ij
ij

+() = ()- ¶ ()
¶

1 h

Back-propagation Algorithm for MLP Models:
	 1.	 Initialize all weights via sampling from normal distribution.

	 2.	 Input data and proceed to pass data through hidden layers to
output layers.

	 3.	 Calculate the gradient and update weights accordingly.

	 4.	 Repeat steps 2 and 3 until algorithm converges upon tolerable
loss threshold or maximum iterations have been reached.

Chapter 4 ■ Single and Multilayer Perceptron Models

96

After having reviewed this model conceptually, let’s look at a toy example. Readers
interested in applications of multi-layer perceptrons to practical example problems
should pay particular attention to Chapter 10. In the following section of code, we
generate new data and display it in the following plot (illustrated in Figure 4-4):

#Generating New Data
x <- as.matrix(seq(-10, 10, length = 100))
y <- logistic(x) + rnorm(100, sd = 0.2)

#Plotting Data
plot(x, y)
lines(x, logistic(x), lwd = 10, col = "gray")

Figure 4-4.  Plotting generated data sequence

Essentially, we have a logistic function around which the data is distributed such
that there is variance around this logistic function. We then define the variable that holds
the weights of the MLP model. I’m using the packaged monmlp, but users may also feel
free to experiment with other implementations in packages such as RSNSS and h2o.
Chapter 10 covers h2o briefly in the context of accessing deep learning models from the
framework:

#Loading Required Packages
require(ggplot2)
require(lattice)
require(nnet)
require(pROC)
require(ROCR)
require(monmlp)

http://dx.doi.org/10.1007/978-1-4842-2734-3_10
http://dx.doi.org/10.1007/978-1-4842-2734-3_10

Chapter 4 ■ Single and Multilayer Perceptron Models

97

#Fitting Model
mlpModel <- monmlp.fit(x = x, y = y, hidden1 = 3, monotone = 1,
 n.ensemble = 15, bag = TRUE)
mlpModel <- monmlp.predict(x = x, weights = mlpModel)

#Plotting predicted value over actual values
for(i in 1:15){
 lines(x, attr(mlpModel, "ensemble")[[i]], col = "red")
}

When plotting the predictions of the MLP model, we see the results shown in
Figure 4-5.

Figure 4-5.  Predicted lines laying over function representing data

As you can see, there are instances in which the model captures some noise,
evidenced by any deviations from the shape of the logistic function. But all the lines
produced are overall a good generalization of the logistic function that underlies the
pattern of the data. This is an easy display of the MLP model’s ability to handle non-linear
functions. Although a toy example, this concept holds true in practical examples.

Limitations and Considerations for MLP Models
It is often a problem when using a back-propagation algorithm, where the error is a function
of the weights, that convergence upon a global optimum can be difficult to accomplish.
As briefly alluded to before, when we are trying to optimize non-linear functions, many
local minima obscure the global minimum. We can therefore be tricked into thinking
we’ve found a model which can effectively solve the problem when in fact we’ve chosen a
solution that doesn’t effectively reach the global minimum (see Figure 4-6).

Chapter 4 ■ Single and Multilayer Perceptron Models

98

To alleviate this, the conjugate gradient algorithm is applied. Conjugate gradient
algorithms differ from the traditional gradient descent method in that the learning rate
is adjusted upon each iteration. Many types of conjugate gradient methods have been
developed, but all of them have the same motivation underlying them. In the context of
the MLP network, we’re trying to find the weights that minimize the error function. To do
this, we move in the direction of steepest descent, but we change the step size in such a
way that it minimizes any possible “missteps” in searching for the global optimum. Let’s
take a simple example, where we’re trying to solve

Ax b=

where x is an unknown vector, or weights vector in the context of the MLP network, A
is the matrix of explanatory variables, and b is the response variable. Now look at the
quadratic function

f x x Ax b cT T() = - +
1

2

where c is a constant scalar. When considering an example where A is positive-definite,
the optimal solution for minimizing f (x) is the solution to Ax b= . When calculating the
gradient, we find that ¢() = -f x Ax b, meaning that the direction of steepest descent
would be equal to b Ax- . Therefore, we want to adjust the weight vector, x, with the
following equation:

x x b Axk k= - -()-1 h

Figure 4-6.  Error over weight plot

Chapter 4 ■ Single and Multilayer Perceptron Models

99

The operative part of this method is the transformation of the learning rate, η. By
definition, η minimizes the function when the directional derivative of the function with
respect to the learning rate is equal to zero. According to the chain rule:

df x

d
f x AE

T()
= () -()¢

h
, E = y − ŷ

Finally, we determine the learning rate to therefore be the following:

Let b – Ax = 𝓇

𝓇
k

T 𝓇
k-1

 = 0,

(b – Ax
k
)T 𝓇

k–1
 = 0,

(b – A(x
k–1

 + h 𝓇
k–1

))T 𝓇
k–1

 = 0,

(b – Ax
k–1

)T 𝓇
k–1

 – h (A𝓇
k–1

))T 𝓇
k–1

 = 0,

(b – Ax
k–1

)T 𝓇
k–1

 = h 𝓇 k
T
-1 (A𝓇

k–1
)

𝓇
k

T𝓇
k–1

 = h 𝓇 k
T
-1 (A𝓇

k–1
),

How Many Hidden Layers to Use and How Many
Neurons Are in It
We typically choose to use hidden layers only in the event that data is not linearly
separable. Whenever step, heaveside, or threshold activation functions are utilized, it is
generally advisable to use two hidden layers. With respect to using more than one
hidden layer, it’s largely unnecessary because the increase in performance from using
two or more layers is negligible in most situations. In situations where this may not be
the case, experimentation by observing the RMSE, or another statistical indicator, over
the number of hidden layers should be used as a method of deciding. Often, when
adding a layer to a neural network model, this will be simple as editing an argument in
a function or, in the case of some deep learning frameworks such as mxnet (featured in
later chapters), passing values from a previous layer through an entirely new function.
With respect to how many neurons should be within a given hidden layer, this must be
tested for with the objective of minimizing the training error. Some suggest that it has to
be between the input and output layer size, never more than twice the number of inputs,
capturing .70-.90 variance of the initial data set—or to use the following formula:

*HiddenUnits inputs outputs= +() 2

3
.

Chapter 4 ■ Single and Multilayer Perceptron Models

100

Briefly, let’s look at the difference between the conjugate gradient training method
and traditional gradient descent using the RNSS package in R with the following code:

#Conjugate Gradient Trained NN
conGradMLP <- mlp(x = x, y = y,
size = (2/3)*nrow(x)*2,
 maxit = 200,
 learnFunc = "SCG")
#Predicted Values
y_h <- predict(conGradMLP, x)

We begin by defining the neural network using the mlp() function, in which we
specifically denote the learnFunc argument as SCG (scaled conjugate gradient). We also
choose the size parameter (the number of neurons in a neural network) using the 2/3
rule mentioned earlier.

Now let’s compare the MSE of both the MLP model shown prior and this one we’ve
just constructed:

MSE for Conjugate Gradient Descent Trained Model:
0.03533956

MSE for Gradient Descent Trained Model: 0.03356279

Although only a slight difference in this instance, we can see that the conjugate
gradient method yields a slightly inferior MSE value than the traditional gradient descent
method in this instance. As such, it would be wise, given this trend of staying consistent,
to pick the gradient descent trained method.

Summary
This chapter serves as an introduction into the world of neural networks. Moving
forward, we will discuss models that have been developed for tasks that are generally
beyond what SLP and MLP models are made for. Specifically, in Chapter 5, we will look
at convolutional neural networks for image recognition as well as recurrent neural
networks for time series prediction. Readers who don’t feel comfortable yet with the
concepts discussed in this chapter are advised to review Chapters 2 though 4 again
before advancing to Chapter 5, because many of the concepts referred to in Chapter 5 are
addressed at length in those chapters.

http://dx.doi.org/10.1007/978-1-4842-2734-3_5
http://dx.doi.org/10.1007/978-1-4842-2734-3_2
http://dx.doi.org/10.1007/978-1-4842-2734-3_5
http://dx.doi.org/10.1007/978-1-4842-2734-3_5

101© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_5

CHAPTER 5

Convolutional Neural
Networks (CNNs)

Similar to the concepts covered in Chapter 4 with respect to the multi-layer perceptron
problem, convolutional neural networks (CNNs) also feature multiple layers used to
calculate the output given a data set. This model’s development can be traced back to the
1950s, where researchers Hubel and Wiesel modeled the animal visual cortex. At length
in a 1968 paper, they discussed their findings, which identified both simple cells and
complex cells within the brains of the monkeys and cats they studied. The simple cells,
they observed, had a maximized output with regard to straight edges that were observed.
In contrast, the receptive field in complex cells was observed to be considerably
larger, and their outputs were relatively unaffected by the positions of edges within the
aforementioned receptive field. Beyond image recognition, for which CNNs originally
gained and still retain their notoriety, CNNs have considerable other applications, such as
within the fields of natural language processing and reinforcement learning.

Structure and Properties of CNNs
CNNs are, broadly speaking, multi-layer neural network models. In keeping with the
structure of the animal visual cortex as described by Hubel and Weisel, the model can be
visually interpreted as shown in Figure 5-1.

Figure 5-1.  Broad visual display of a CNN

http://dx.doi.org/10.1007/978-1-4842-2734-3_4

Chapter 5 ■ Convolutional Neural Networks (CNNs)

102

Each block represents a different layer of the CNN, which I explain in greater detail
later in this chapter. From left to right are the input, hidden (convolutional, pooling, and
dropout layers), and fully connected layers. After the final layer, the model outputs a
classification. Now consider Figure 5-2.

Fully connected layers enforce local connectivity between neurons and adjacent
layers, as show in Figure 5-2. As such, the inputs of hidden layers are a subset of neurons
from the layer preceding that hidden layer. This ensures that the learned subset neurons
produce the best possible response. Also, the units share the same weight and bias in the
feature/activation map, so that all the neurons in a given layer are analyzing/detecting
the exact same feature.

As for features in the context of CNNs, I mean portions of an image that are distinct.
This is what our filter compares the section of the image it is analyzing to, such that it can
determine the degree to which the section of the image being scanned over is similar
to the feature being analyzed. Assuming that we have enough training data and enough
classes of images, these features are distinct enough that they help to distinguish one
class from another.

Imagine we’re looking at two images, specifically an X and O, such as in Figure 5-3.

If we image both the X and the O as distinct images, to the human eye we can
determine them as distinctly different letters. Among their distinguishing factors are that
the center of the O is empty, whereas the center of the X features two intersecting lines.
Examples of the feature maps of these values when visualized are shown in Figures 5-4
and 5-5.

Figure 5-2.  CNN architecture diagram

Figure 5-3.  O and X example photo

Chapter 5 ■ Convolutional Neural Networks (CNNs)

103

These values are often represented as an entry within a matrix with –1 and 1 for
black and white respectively. When dealing with color images, each pixel is typically
represented as an entry in a matrix with a value of 1 or 256 for black and white
respectively. Depending on the language being used, though, zero indexing may affect
the representation of RGB values such that the bounds shift backwards by 1.

Components of CNN Architectures
This section covers the components of CNN architectures.

Convolutional Layer
This layer is where the majority of the computation in any given CNN occurs and as such
is the first layer after input that an image passes through. Within a convolutional layer, we
have filters that scan over a portion of the image. Every filter is not particularly large with
respect to height and width, but all of them extend through the entirety of the length of
this layer.

Figure 5-4.  Feature map of “X”

Figure 5-5.  Feature map of “O”

Chapter 5 ■ Convolutional Neural Networks (CNNs)

104

For example, imagine we’re trying to classify an image as either a 1 or a 0, and the
image in actuality is a 1. And imagine that the image has a black background, but the digit
is outlined in white pixels. Figure 5-6 shows an example of what this image can be said to
look like.

The computer will distinguish the white pixels as having a value of 1 and the black
pixels as having a value of –1. When we input this image through the convolutional layer,
the model extracts the unique features of an image, which usually are the colors, shapes,
and edges that ultimately define a specific image. Once we have the features of a given
training image, we perform what is known as filtering over this inputted image. Filtering
is the process of taking an image feature, which in this case we can imagine as a 3 x 3 pixel
square, and matching it with a patch of that inputted image, which is also a 3 x 3 pixel
square. In Figure 5-7, we can see what the process of filtering looks like.

We then multiply the number of the pixel of the feature by the corresponding number
of the pixel of the image patch. In the example, we should gain an output of 1 or –1 for each
operation. Intuitively, when the pixels match exactly, they should output to 1, and when
they don’t, they should output to –1. At the end, we take the average of the pixel products.
If an image matches exactly, the average should be 1. If it doesn’t, it will be considerable
degrees lower than one. In this instance, imagine that the image patch and feature selected
don’t match at all. As such, when we take the average, it should output to –1. We place
this product in the center of the position of the image patch we are analyzing with a given
feature on what is called a feature map. This ultimately will be the output of the convolution
layer and will be used in the following layer. The convolutional layer will, over different
iterations, produce multiple feature maps. The process of matching a feature with a given
image patch over every possible position is known as convolving an image. We denote the
feature/activation map for a given CNN as

Figure 5-6.  Example image of “1”

Figure 5-7.  Example of a filter

Chapter 5 ■ Convolutional Neural Networks (CNNs)

105

h w x bi j
k k

i j k, ,
tanh= () +()

where wk is the weight, b
k
 is the bias, x is the value of the specific pixel, and tanh is for

non-linearities in data. The subscripts i,j refer to the entry of the matrix that represents
the feature/activation map. The weight, wk, is ultimately what connects the pixels in the
feature maps to the preceding layer. The convolution layer, ultimately, is a stack of the
feature maps that were yielded from the operation described earlier. We then put the
feature maps into the pooling layer. We calculate the spatial size of the output volume as

Spatial Size
W F P

SOutput =
- +
+

2

1

where W = input volume size, F = size of receptive field of in convolution layer,
P = amount of zero padding, and S = stride.

Pooling Layer
Between successive convolutional layers, it’s common to place what is called a pooling
layer in between. Simply stated, the pooling layer takes the feature maps produced in
the convolution layer and “pools” them into an image. The pooling layer effectively
performs dimensionality reduction, hence the prior emphasis on spatial representation,
thereby reducing the complexity of the model. This can be compared to the process of
pruning in decision trees and similarly helps to prevent overfitting of a given model. In the
prototypical CNN model, the pooling layer has a 2 x 2 filter, a stride of 2, and every depth
slice in the input is downsampled such that we move by 2 pixels with respect to height and
width. These operations in the pooling layer help to discard 75% of the feature/activation
map. This layer uses a max operation, which in the aforementioned example would be
taking a max over 4 numbers, or the 4 pixels in any given feature/activation map.

In keeping with the example described earlier, imagine that with a 2 x 2 filter, we’re
looking at 9 x 9 feature map, where we’re analyzing the top lefthand corner with the
following scores:

.88 0

0 .95

When using the max operation, we would choose .95, because it’s the maximum
value within the 2 x 2 window. Because we have a stride of 2, we move 2 pixels to the
right, which should mean that we’re looking at a 2 x 2 slice of the image where the top
lefthand corner of the slice should be the third column of the feature map until we have
a max pooled image, which is significantly reduced and therefore removes unnecessary
complexities of the model. As a direct consequence of the max operation used in this
layer, we needn’t be as precise as the prior layer when analyzing the image, and therefore
this helps to make a more robust model that can more easily classify inputs. What I mean

Chapter 5 ■ Convolutional Neural Networks (CNNs)

106

by this specifically is that the values of the weights connecting each layer can be more
generalized to all the training data that they have been exposed to, rather than overfitting
in such a manner where the CNN wouldn’t perform well out of sample.

The function that determines the spatial size of the output is given by

Spatial Size W x H x LOutput = 2 2 2 ,

where

W
w F

s
H

H F

S
L L2

1
2

1
2 11 1

=
-
+

=
-
+

=, ,

Rectified Linear Units (ReLU) Layer
Rectifiers are used as another term for an activation function. Typically, we apply the
following function to the inputs to this layer

f x x() = ()max 0,

where x = input to a neuron.
When applied to the feature map, we can imagine that any of the values of the feature

map that would be negative now are zero. Specifically, this helps outline the feature map
closer to the image it’s most associated with. We do this to all of the feature maps to then
get a “stack” of images.

Fully Connected (FC) Layer
Any neurons in this layer are connected to all the activation maps in the preceding layer.
This layer is usually placed after a user-determined amount of convolutional, pooling,
and ReLU layers. The images inputted to this layer will be significantly smaller than the
original inputs due to the image reductions specified in the prior operations. In this layer,
we scan the reduced images, which should correspond to each feature map, and turn
each of the values given here into a list of values. This list then corresponds to one of the
k images we put in. Following from the example used in the beginning of the chapter,
we originally inputted a 1. After moving through all the layers, we take the average of
the scores corresponding to this image, and then this is the probability of the image
being a 1 or a 0. It should be noted that the only difference between this layer and the
convolutional layer is the fact that the convolutional layers are only connected to a local
region in the input and that many of the neurons in a convolutional layer volume share
parameters. With this in mind, we can also convert between FC and convolutional layers
when constructing a given architecture.

Chapter 5 ■ Convolutional Neural Networks (CNNs)

107

Loss Layer
This layer is where we compare the predicted labels from the actual labels of the images.
When trying to classify and object from k possible feature levels, we would use a softmax
loss classifier. Using a Euclidean function is also common for the purpose of regressing
against the labels of the specific images. Their functions are given by the following:

	 I.	 Softmax loss function:

s z
e

e
j

z

k

K
z

j

k

() =

=
å

1

	 II.	 Euclidean loss function:

E
N

yy
i

N

i i= -
=
å1

2 1
2

2
ˆ

	 III.	 Softmax normalization:

¢ =

+
-

-æ

è
çç

ö

ø
÷÷

x

e

i xi i

I

1

1
m

s

When using the back-propagation algorithm, we make a confusion matrix comparing
a 1 or a 0, where we subtract the label of the answer to the probability assigned. Following
the example that we’ve been using, let’s say 1 = 1, and 0 = 0, but when we input a 1,
we only receive a probability of .85 that it is a 0, and a probability of .45 that it is a 1.
Therefore, we would have a cumulative error of –.60. We then adjust each feature maps
pixel, through the weights displayed in the fully connected layer, using a gradient method
as described before, with a designated learning rate. We initialize the weights at 0 and
stop the CNN at the point at which the loss tolerance has been reached or the maximum
iterations threshold has been reached. The same considerations for convergence upon an
optimal solution as described in prior chapters must be taken into consideration.

Chapter 5 ■ Convolutional Neural Networks (CNNs)

108

Tuning Parameters
Images sent to the input layer should be divisible by 2 more than once. Common image
dimensions are 32 x 32, 64 x 62, and so on. Convolutional layers should have filters with
dimensions of 3 x 3 or 5 x 5 at most, and zero-padding should be performed in such a
way that it doesn’t alter the spatial dimensions of the input. For the pooling layers, their
dimensions should be 2 x 2 with a stride of 2 most often. With these parameters, 75% of
the activations will be discarded. Pooling layers that are larger than 3 result in too much
loss in the classification process. When describing neurons and their arrangements,
hyper-parameters are most relevant to this conversation. Specifically, I will be referring to
stride, depth, and zero-padding. Among the most important parameters in CNNs, stride
is a fixed parameter that determines the number of pixels that slide through a filter. For
example, if the stride is 2, then 2 pixels at a time slide through the filters. Typically, stride
is no greater than 2, and no less than 1. Zero-padding is the size of the zeroes around the
border of the input volume. Through controlling zero-padding, we can more carefully
control size of the activation maps, and other outputs, from layer to layer. Finally, depth
refers to the number of filters we choose for a given experiment, each of which is what
ultimately searches over each image in the convolutional layer.

Notable CNN Architectures
•	 LeNet: Developed in the 1990s by renowned deep learning

researcher Yann LeCun, LeNet is a relatively simple architecture,
all things considered. The purpose of this model was originally to
classify digits, read zip codes, and perform general simple image
classification. This is considered the analogue to a “Hello World”
program that any developer first writes in a given language,
because it’s considered to be the first successful CNN application
to a practical task. As Figure 5-8 illustrates, the layers involved are
as follows:

•	 input, conv layer, ReLU, pooling layer, conv layer, ReLU,
pooling layer, fully connected, ReLu, fully connected, and
softmax classifier.

Figure 5-8.  Visualization of LeNet

Chapter 5 ■ Convolutional Neural Networks (CNNs)

109

•	 GoogLeNet (Inception): This architecture won the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) competition
in 2014 in homage to Yann LeCun’s LeNet. It was developed by
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Ehran, Cinven Vanhoucke,
and Andrew Rabinovich. The name GoogLeNet is derived from
the fact that a considerable number of the developers of the
architecture work at Google Inc. In their paper “Going Deeper
with Convolutions,” they describe an architecture that allows for
“increasing the depth and width of the network while keeping the
computational budget constraint.” As Figure 5-9 illustrates, the
structure as proposed is as follows:

•	 Input, conv. layer, max pool, conv layer, pooling layer (with
max function), inception (2 layers), max pool, inception,
inception (5 layers), max pool, inception (2 layers), average
pooling layer, dropout, ReLU, softmax classifier.

The focus of the inception architecture is that through
the orientation in the layers as described earlier, the CNN
model allows for “increasing the number of units at each
stage” without doing so to the point where the model
becomes too complex. Overall, the model seeks to process
visual information at various scales and then aggregate the
calculations to the next stage so higher levels of abstraction
are analyzed simultaneously.

Figure 5-9.  GoogLeNet architecture

Chapter 5 ■ Convolutional Neural Networks (CNNs)

110

•	 AlexNet: Developed by Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton, this won the ILSVRC in 2012. Similar in
architecture to LeNet, AlexNet uses “non-saturating neurons”
and efficiently implements the GPU for the convolution layers.
The neurons in fully connected layers are connected to all
neurons in the previous layer, response-normalization layers
follow the first and second convolutional layers, and the kernel of
layers two, four, and five are connected only to the kernel maps
in the previous layer, which would be on the same GPU. The
architecture is as follows (and shown in Figure 5-10):

•	 Convolutional (5 layers), fully connected (3 layers), [output is
1000-way softmax classifier]

•	 VGGNet: This took second place to AlexNet in the ILSVRC 2014
competition. VGGNet was developed by Karen Simonyan and
Andrew Zisserman from the University of Oxford. The receptive
field is 3 x 3, with 1 x 1 filters, stride is 2, and max pooling size is
2 x 2. The architecture is such that the input is fed through several
convolutional layers, to three fully connected layers (the first and
second layers have 4096 channels, and the final is a softmax layer
that performs 1000-way classification).

•	 ResNet: The first-place winner of ILSVRC 2015, ResNet features
152 layers—far exceeding the amount of the previously mentioned
networks. It was developed by Kaimin He, Xiangyu Zhang,
Shaoqing Ren, and Jian Sun, all of whom are from Microsoft
Research. The purpose of this architecture is to form a network
that learns residual functions with references to the layer inputs,
rather than a network learning unreferenced functions. The end
result is a network that is considerably easier to learn, significantly
easier to optimize, and that gains accuracy from increased depth,
rather than one that loses accuracy from that depth.

Figure 5-10.  AlexNet architecture

Chapter 5 ■ Convolutional Neural Networks (CNNs)

111

Regularization
When multi-layer perceptrons have more than one layer, they are known to have the
ability to approximate a given target, which then would lead to overfitting. To prevent
overfitting, regularizing the input data is often recommended, however this is a slightly
different process in the case of CNNs, we can use: 1) DropOut, which is taken from the
inspiration of a phenomena observed within the human brain. This is where a given
hidden layer has the probability of not being passed through with the probability we set
as a hyperparameter. 2) Stochastic pooling, where the activation is picked randomly.
Stochastic Pooling doesn’t require hyper-parameters and can be used as a heuristic, so to
speak, with other regularization techniques. 3) DropConnect, which is a generalization
of dropout, where each connection can be dropped with the probability of 1 – p. Each
unit in this layer inputs data from random units in the preceding layer, which change
upon every iteration. This helps ensure that the weights don’t overfit. 4) Weight Decay,
which functions similarly to L1/L2 regularization, where we heavily penalize large weight
vectors.

Of these methods, there has been a considerable amount of enthusiasm around
using DropOut in CNNs, because it’s been shown to be an effective and powerful
technique. Beyond preventing overfitting, DropOut has been observed to improve the
computational efficiency of networks with large amounts of parameters, as this form of
regularization causes a network to in effect become smaller during a given iteration. After
all these iterations, the smaller networks’ performance can be averaged into a general
prediction of what a complete network would have performed as. Secondly, it is observed
that the DropOut layer introduces randomized performance in the network that allows
noise within the data to be averaged over, such that its masking of signals within the data
is diminished.

It’s not uncommon to use L1 regularization either, but be aware of the fact that the
weight vectors in this instance can often shrink to 0—sometimes enough so that we
can be left with a sparsely populated weight matrix. The negative effect of this type of
regularization is that the inputs to certain layers that contain important information
may become entirely unnoticed due to a “dead” connection between layers. In contrast,
though, when you feel specifically that you want very explicit feature selection, L1
regularization may yield significantly better performance.

L2 regularization is traditionally seen as the standard method by which
regularization is performed in CNNs, because it tends to penalize abnormally large
weights and favor those that are generally mild in their proportion relative to the entirety
of the matrix. In contrast to L1 regularization, you get a considerably more populated
weight matrix, which will cause the network to feed more data from a given layer to the
next. As such, feature selection will be less stark than when using L1 regularization.

The final type of regularization you should know about would be an addendum
to either L1 or L2 regularization via enforcing limits on a given weight’s norm size. As
such, this would allow the parameter updates to have a hard limit and therefore limit
the number of possible solutions a given network can yield. This would help to train the
network faster via the limitation of possible solutions, and in the optimal solution prevent
the parameters from updating too far in the incorrect direction.

Chapter 5 ■ Convolutional Neural Networks (CNNs)

112

Summary
We have sufficiently covered the concepts of CNNs and walked through all the
architectures that are most recent at this time. See Chapter 11 for an applied example of
a CNN, specifically with respect to the preprocessing of image data—a highly important
step in the constructing of image recognition software. Moving forward, we will discuss
recurrent neural networks (RNs) and the intricacies of detecting patterns in time
series–based data.

http://dx.doi.org/10.1007/978-1-4842-2734-3_11

113© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_6

CHAPTER 6

Recurrent Neural Networks
(RNNs)

Recurrent neural networks (RNNs) are models that were created to tackle problems
within the scope of pattern recognition and are fundamentally built on the same concepts
with respect to feed-forward MLPs. The difference is that although MLPs by definition
have multiple layers, RNNs do not and instead have a directed cycle through which
the inputs are transformed into outputs. I’ll begin the chapter by covering several RNN
models and end it with a practical application of RNNs.

Fully Recurrent Networks
Imagine that we have an input, x, that we’re inputting into an RNN model, where we
define the state as h, with the inputs being multiplied by a weight matrix, W. So far,
everything is the same as it would be in previously described neural network models—
but as stated before, RNNs perform the same task on the inputs over time. Because of this,
to calculate the current state of a neural network, we derive the following equation:

h f W x W h b where f ReLUt t R t= + +() =-1 , ,tanh

y f Wh b whereW weights h hidden layer b biast t t r t= +() = = =, , ,,

The key characteristic here is that when the neural network performs these
operations, it “unfolds” into multiple new states, each of which is dependent on the prior
states. Because these networks perform the same task for every input that’s put in, in
addition to the functional dependency of the model, RNNs are often referred to as having
memory. Figure 6-1 illustrates an RNN.

Chapter 6 ■ Recurrent Neural Networks (RNNs)

114

This form of the RNN was developed in the 1980s. Similar to other neural networks,
multiple layers of neurons are connected by weights, with each weight being altered via
back-propagation methods. We alter our weights based on an evaluation statistic, which
in this case is the weighted sum of the activation units at a given time step. The total
error is the sum of all these individual weighted sums across all time steps. There may be
teacher-driven target activations for some of the output units at certain time steps. For
example, if the input sequence is a speech signal corresponding to a spoken digit, the
final target output at the end of the sequence may be a label classifying the digit. For each
sequence, its error is the sum of the deviations of all target signals from the corresponding
activations computed by the network. For a training set of numerous sequences, the total
error is the sum of the error of all individual sequences.

Training RNNs with Back-Propagation Through
Time (BPPT)
Sepp Hochreiter and Jurgen Schmidhuber, among others, are considered among the
greatest pioneers for development of training methods for deep learning. The standard
method is called back-propagation through time (BPTT). BPTT is roughly the same as
regular back-propagation, except it was created to deal with a specific problem that RNNs
have, which is the fact that we are evolving a model through various time steps. For each
training epoch, we begin by first training on reasonably small sequences and gradually
increasing the length of the aforementioned training sequence. Intuitively, this is typically
envisioned as training on a sequence of length 1,2, through N, where N is the maximum
possible length of the sequence. Here is an equation describing this phenomenon more
succinctly

Figure 6-1.  Architecture of recurrent neural network

Chapter 6 ■ Recurrent Neural Networks (RNNs)

115

d dp j
h

m

ph hj pjt t u f s t, -() = () -()()¢å1 1

where t = time step, h = index for hidden node at t, j = hidden node at step t = 1, and δ = errors.
In detail, we can view the phenomena as the following: we define W as the matrix of

weights for the output layer with the equation

W t W t t to

T+() = ()+ () ()1 hs e

where e
o
 = errors from the output layer:

e d yo t t t() = ()- ()

We now have k sequences, through which we unfold the network into a regular
feed-forward network that we’ve been observing up until this point. However, the recurrent
layer in RNN model simultaneously takes the input from the preceding layer as well as the
successive layer. To offset the change in weights that occurs from simultaneous inputting
when back-propagating the errors, we average the updates that each layer receives.

Elman Neural Networks
RNN architectures received additional contributions from Jeffrey Elman, who is credited
with creating the Elman network model named after him. Primarily, the architectures
Elman constructed were for language-processing algorithms, but they can also be useful
for any problem in which the input data is sequential or time-series based. Figure 6-2
shows the basic structure of an Elman network.

Figure 6-2.  Illustration of Elman network

Chapter 6 ■ Recurrent Neural Networks (RNNs)

116

Elman included a layer of context units in this architecture that are distinguished
by the fact that their functionality is highly concerned regarding prior internal states.
One of the key distinctions of an Elman network is for the output of the hidden layer to
feed into the context units in the preceding layer as well, but the weights that connect
the context units and hidden layer have a constant value of 1, making the relationship
linear. After this, the input layer and context layer simultaneously activate the hidden
layer, whereupon the hidden layer also outputs a value while performing the update step.
During the next epoch, the training sequence previously described occurs the same way,
except here we observe that the layer with the context units now adopt the values of the
hidden layer from the prior epoch. This feature of the context units colloquially has been
described as the network having memory. Training this neural net requires a multitude of
steps, the number of which ultimately depends on the length of the string being chosen.

Neural History Compressor
The vanishing gradient specifically refers to the gradients in earlier layers of a network
becoming infinitesimally small. This occurs due to whatever activation function we
use, usually a tanh or sigmoid. Because these activation functions “squash” the inputs
into relatively small ranges to make interpolating the results easier, it makes deriving
the gradients significantly more difficult. Repeat this process of squashing inputs after
multiple stacked layers, and by the time we back-propagate to the first layer, our gradient
has “vanished.” The problem of vanishing gradients was partially dealt with via the creation
of neural history compressors—an early generative model implemented as an unsupervised
“stack” of recurrent neural networks. The input level learns to predict its next input from the
previous input history. In the next higher-level RNN, the inputs are comprised of only the
unpredictable inputs of a subset of the RNNs in the stack, which ensures that the internal
state is recomputed rarely. Each high-level RNN thus learns a compressed representation
of the information in the RNN below. By design, we can precisely reconstruct the input
sequence from the sequence representation at the highest level. When we’re using
sequential data with considerable predictability, supervised learning can be utilized to
classify substantially deeper sequences via the highest-level RNN.

Long Short-Term Memory (LSTM)
LSTM is an increasingly popular model whose strength is handling gaps of unknown size
between signals in the noise of the data. Developed in the late 1990s by Sepp Hochreiter
and Jurgen Schmidhuber, LSTMs are universal such that when enough network units are
present, anything a computer can compute can be replicated with LSTMs, assuming we
have a properly calibrated weight matrix. Figure 6-3 illustrates.

Chapter 6 ■ Recurrent Neural Networks (RNNs)

117

The range of applications of LSTMs explains their popularity in part, as they are
often used in the fields of robot control, time series prediction, speech recognition, and
other tasks. In contrast to the units that we often see in other RNN architectures, LSTM
networks contain blocks. Other key distinguishing factor of LSTMs is being able to
“remember” a given value for extended periods of time and the gates within the model
determining several attributes of the input sequence. Among the considerations of the
gates are input significance, when should memory be kept or “garbage collection” occur
and data be removed, and output value time. A typical implementation of an LSTM block
is shown in Figure 6-3. The sigmoid units in a standard LSTM contain the equation

y s w x
i

N

i i=
æ

è
ç

ö

ø
÷

=
å

1

,

where s is a squashing function (in many cases, often a logistic function or any activation
function, as described in prior models). Looking at Figure 6-3, the sigmoid unit furthest
to the left feeds the input to the LSTM block’s “memory.” From this point forward, the
other units in the figure serve as the gates, which either permit or deny access into the
LSTM memory. The unit entitled i, which we denote as the input gate of the diagram, will
block all values from entering the memory that are very small (close to zero). The forget
gate, the unit at the bottom of the figure, “forgets” whatever value it was remembering
and discards this from the memory. The unit in the top righthand corner of the figure is
the “output gate,” which determines whether the value stored in the memory of the LSTM
should be outputted. Occasionally, we observe units that are denoted by the following
symbols: P or Σ. Units that have the summation symbol are fed back into the LSTM

Figure 6-3.  Visualization of long short-term memory network

Chapter 6 ■ Recurrent Neural Networks (RNNs)

118

block as to facilitate remembrance of the same value over many time steps sans value
decay. Typically this value is also inputted into the three gate units improve their respect
decision making processes. The Haramard product, or entrywise product of matrices
used in LSTMs, is given by the following in index notation:

A B A x B
i j i j i j() =
, , ,

Traditional LSTM
Above, we have the layers of an LSTM through which our data passes

f W x U h bt g f t f t f= + +()-s 1 ,

i W x U h bt g i t i t i= + +()-s 1 ,

o W x U h bt g o t o t o= + +()-s 1 ,

c f c i W x U h bt t t t c c t c t c= + + +()- - 1 1s ,

h o ct t h t= ()s ,

where x = input vector, h
t
 = output vector, c

t
 = cell state, (W, U, b) = paramter matrices

and vector, ( f
t
, i

t
, and o

t
) = remembered information, acquired information, and output,

respectively, s
g
 = sigmoid function, s

c
 = original hyperbolic tangent, s

h
 = original

hyperbolic tangent.

Training LSTMs
BPPT is used for LSTMs, but due to special features of the LSTM, we can also use gradient
descent via BP as we would traditionally. Vanishing gradients in LSTMs are handled
specifically by the error carousel. LSTMs “remember” their back-propagated errors, which
are then fed back to each of the weight. Thus, regular back-propagation is effective at
training an LSTM block to remember values for very long durations of time.

Chapter 6 ■ Recurrent Neural Networks (RNNs)

119

Structural Damping Within RNNs
If we’re using a conjugate gradient method and it strays too far from the original x, the
curvature estimate becomes inaccurate and we may observe an inability to converge
upon the global optimum. Suggested by Martens and Sutskever, structural dampening is
recommended when using conjugate gradient methods. With this method, we penalize
large deviations from x, where the formula is given by

 f x x f x xd () () ,+ = + +D D Dl x
2

where ||Δx||2 is the magnitude of the deviation. λ, similar to ridge regression, serves as a
tuning parameter.

The tuning parameter is adaptive and is chosen via a process similar to that of
the Levenburg-Marq algorithm described in Chapter 3. It is suggested that we find a
reduction ratio, given by the following equation:

r º
f

f

() ()

() ()

x + x f x

x + x f x

D
D

-
- 

Tuning Parameter Update Algorithm
Weights are updated at each time step and as such augmenting the value in this matrix
can cause drastic changes in the output:

If r >æ
è
ç

ö
ø
÷

3

4
{

l l®
2

3
.

} {Else If r <æ
è
ç

ö
ø
÷

1

4

l l®
3

2

} Else If
1

4

3

4
< <æ

è
ç

ö
ø
÷r {

l l® (), noupdate

http://dx.doi.org/10.1007/978-1-4842-2734-3_3

Chapter 6 ■ Recurrent Neural Networks (RNNs)

120

Practical Example of RNN: Pattern Detection
Let’s take the example of trying to predict time series based sequential data. In this
instance, we’re going to try and predict the production of milk at different times of the year
(Figures 6-4 and 6-5). Let’s begin by examining our data to get an understanding of it:

#Clear the workspace
rm(list = ls())
#Load the necessary packages
require(rnn)

#Function to be used later
#Creating Training and Test Data Set
dataset <- function(data){
 x <- y <- c()
 for (i in 1:(nrow(data)-2)){
 x <- append(x, data[i, 2])
 y <- append(y, data[i+1, 2])
 }
 #Creating New DataFrame
 output <- cbind(x,y)
 return(output[1:nrow(output)-1,])
}

When working with time series data, we will have to perform a significant amount
of data transformation. Particularly, we must create X and Y variables that are slightly
different from the given data. From the dataset() function, we create a new X variable,
which is time step t, from the original Y variable. We make a new Y variable that is t + 1
from the original Y variable. We then truncate the data by one row such that we remove
the missing observation. Moving forward, let us load and visualize the data (shown in
Figures 6-4 and 6-5):

#Monthly Milk Production: Pounds Per Cow
data <- read.table("/Users/tawehbeysolow/Downloads/monthly-milk-production-
pounds-p.csv", header = TRUE, sep = ",")
#Plotting Sequence
plot(data[,2], main = "Monthly Milk Production in Pounds", xlab = "Month",
ylab = "Pounds",
 lwd = 1.5, col = "cadetblue", type = "l")
#Ploting Histogram
hist(data[,2], main = "Histogram of Monthly Milk Production in Pounds", xlab
= "Pounds", col = "red")

Chapter 6 ■ Recurrent Neural Networks (RNNs)

121

As you can see, our data has a heavy right skew with respect to the frequency of
values, despite the seemingly wide range of values.

Figure 6-4.  Visualization of sequence

Figure 6-5.  Visualization of milk data via histogram

Chapter 6 ■ Recurrent Neural Networks (RNNs)

122

Now that you’ve visually understood our data, let’s move on and prepare our data to
be inputted into the RNN:

#Creating Test and Training Sets
newData <- dataset(data = data)

#Creating Test and Train Data
rows <- sample(1:120, 120)
trainingData <- scale(newData[rows,])
testData <- scale(newData[-rows,])

I recommend that all users use max-min scaling prior to inputting their data into an
RNN, because it significantly helps with reducing the errors from a given neural network.
Similar to standard normalization, max-min scaling significantly reduces the range of
your input data set, but it does so by classifying observations between 0 through 1 rather
than by returning how many standard deviations away from the mean the data is. After
we have performed this step, we can input our data. Users may feel free to experiment
with the parameters, but I have trained the network for good performance.

Now let’s evaluate our training and test results (shown in Figures 6-6 and 6-7):

#Max-Min Scaling
x <- trainingData[,1]
y <- trainingData[,2]

train_x <- (x - min(x))/(max(x)-min(x))
train_y <- (y - min(y))/(max(y)-min(y))

#RNN Model
RNN <- trainr(Y = as.matrix(train_x),X = as.matrix(train_y),
learningrate = 0.04, momentum = 0.1,
network_type = "rnn", numepochs = 700, hidden_dim = 3)

y_h <- predictr(RNN, as.matrix(train_x))
#Comparing Plots of Predicted Curve vs Actual Curve: Training Data
plot(train_y, col = "blue", type = "l", main = "Actual vs Predicted Curve",
lwd = 2)
lines(y_h, type = "l", col = "red", lwd = 1)
cat("Train MSE: ", mse(y_h, train_y))

#Test Data
testData <- scale(newData[-rows,])
x <- testData[,1]
y <- testData[,2]
test_x <- (x - min(x))/(max(x)-min(x))
test_y <- (y - min(y))/(max(y)-min(y))
y_h2 <- predictr(RNN, as.matrix(x))

Chapter 6 ■ Recurrent Neural Networks (RNNs)

123

#Comparing Plots of Predicted Curve vs Actual Curve: Test Data
plot(test_y, col = "blue", type = "l", main = "Actual vs Predicted Curve",
lwd = 2)
lines(y_h3, type = "l", col = "red", lwd = 1)
cat("Test MSE: ", mse(y_h2, test_y))

Figure 6-6.  Training data performance

Figure 6-7.  Test set performance

Chapter 6 ■ Recurrent Neural Networks (RNNs)

124

Respectively, the training and test set have MSEs of 0.01268307 and 0.06666131.
Although the MSE for the training set is lower, this is likely just because the training set is
significantly larger than the test set. We can see how the test performance is less accurate
than the training set by visually comparing the curves in the respective plots. As you can
see, the actual curve in both the training and test sets exhibits higher variance than the
RNN can completely capture. If you’re reading the e-book, the actual curve is in blue and
the predicted curve is in red.

Summary
This chapter has effectively covered the most frequently mentioned RNN examples. It
also walked the reader through tackling time series data problems. Chapter 7 addresses
some of the most recent developments in deep learning and also explores how we can
use these insights to tackle even more difficult problems.

http://dx.doi.org/10.1007/978-1-4842-2734-3_7

125© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_7

CHAPTER 7

Autoencoders, Restricted
Boltzmann Machines, and
Deep Belief Networks

This chapter covers some of the newer and more advanced deep learning models that have
been gaining popularity in the field. It is intended to help you understand some of the recent
developments in the field of data science. To see how these models are applied in a practical
context, see Chapters 10 and 11, where we will be utilizing these in practical examples.

Autoencoders
Prior to discussing restricted Boltzmann machines (RBMs), I want to address a set of
related algorithms. Autoencoders are known as feature extractors, in that they are able to
learn the encoding/representation of data. The data inputted to an RBM would be the
same data that we would input to any machine learning algorithm, but for the sake of
simplicity we can imagine it as an M x N matrix where each column is a unique feature
and each row a unique observation of N features. It is an unsupervised learning method
that uses back-propagation to find a way to reconstruct its own inputs. Developed by
Geoffrey Hinton, along with other researchers, autoencoders address the problem of how
to perform back-propagation without explicitly telling the autoencoder what to learn from.

Autoencoders consist of two parts: the encoder and the decoder. Let’s look at a
simple example of what we will denote as an n/p/n autoencoder architecture. This
architecture is denoted by n p m, , , , , , , , ,G F A B X D where the following are true:

	 1.	 G Fand are sets.

	 2.	 n and p are positive integers where 0 < <p n.

	 3.	 Let  be a function where : .G Fp n→

	 4.	 Let  be a function where : .F Gn p→

http://dx.doi.org/10.1007/978-1-4842-2734-3_10
http://dx.doi.org/10.1007/978-1-4842-2734-3_11

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

126

	 5.	  = …{ }∈x xM
n

1 , ,  and when targets are present,

 = …{ }∈y yM
n

1 , , .

	 6.	 Δ is an L
p
 norm or some other loss/dissimilarity function.

For any A∈ , and B∈ , the autoencoder transforms the input x into an output
vector:

x̂ A B x n= ()∈ 

Broadly, the problem we seek to solve by using an autoencoder is ultimately an
optimization problem—in this case, it is to minimize the loss/dissimilarity function. We
define this problem as the following:

min min minE A B E x A B x x
A B

m

M

m
A B

m

M

m m,() = () = ()()
= =
∑ ∑

, ,
,

1 1

∆ 

When targets are present:

min min minE A B E x y A B x y
A B

m

M

m m
A B

m

M

m m,() = () = ()()
= =
∑ ∑

, ,
, ,

1 1

∆ 

Linear Autoencoders vs. Principal Components
Analysis (PCA)
For this example, let’s look at the similarities between principal components analysis
(PCA) and linear autoencoders. The primary focus of PCA is to find the linear
transformations of the original data set that contain the most variability within them
in. When translating this analysis to the original data set, we use this to achieve
dimensionality reduction. Chapter 8 talks about PCA in greater detail, but I will explain
the relation it has to linear autoencoders here. Plainly stated, PCA is an orthogonal
linear transformation where we seek to maximize the variance within each principal
component subject to the constraint that each principal component is uncorrelated with
each other. Let us define y as the following:

y Axi i= ,

where x n∈ and is the data set, and A nxn∈ and is the orthogonal covariance matrix. As
is the case with PCA, each principal component should be listed in order of decreasing
variance. We define the direction of maximum variance as the following:

ŵ
w X Xw

w ww

T T

T
=argmax

http://dx.doi.org/10.1007/978-1-4842-2734-3_8

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

127

This by definition is a constrained optimization problem, solvable by using
Lagrangian multipliers. Therefore, we can remodel the problem as

 w w Cw w wT t,λ λ() = − −()1 ,

Cw w− =λ 0,

Cw w=λ

where C X XT= .

Single layer autoencoders will yield almost the exact same eigenvectors as PCA. That
said, PCA assumes a linear system in its derivation in contrast to autoencoders that don’t.
In the instance that we force linearity in an autoencoder, a similar answer will be reached.

To see applications of autoencoders, see Chapter 11, where we specifically use these
models for anomaly detection and improving model performance for standard machine
learning models.

Restricted Boltzmann Machines
In the 1980s, Geoffrey Hinton, David Ackley, and Terrence Sejnowski developed this
algorithm, which can be described as a type of stochastic neural network. At the time,
it represented a breakthrough in the science of deep learning because it was among the
first models to be able to learn the internal representations of data and have an ability
to solve difficult combinatorics problems. The standard restricted Boltzmann machine
has a binary-valued hidden and visible unit, consisting of a matrix of weights, W,
associated with the connection between a given set of hidden units and visible units, and
a bias weight. The hidden, visible, and bias units can be thought as analogous to those
same units that appear in a multilayer perceptron model. Given these, the energy of a
configuration is stated as the following:

E v h a v b h vw h
i

N

i i
j

N

j j
i

N

j

N

i i j j,() = − − −
= = = =
∑ ∑ ∑∑

1 1 1 1
,

This energy function is similar to the output neurons of a Hopfield network
(see Figure 7-1), which is a particular type of RNN. Created in the 1980s by John Hopfield,
the inputs, as with other RNN models, typically would be data that we suspect to have
some underlying pattern (a time series for example). The weighted sum of all inputs is
calculated, whereupon it is inputted into a linear classifier such as a logistic function.
We define the output as the following:

ˆ
,

,
y

w x

w x
i i

i i

=
≥

− <






∑
∑

1 0

1 0

http://dx.doi.org/10.1007/978-1-4842-2734-3_11

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

128

After data is inputted to the model, all the nodes in the network receive specific
values. The network is then subjected to a number of iterations using asynchronous
or synchronous updating. After a stopping criterion is reached, the values within the
neurons are displayed. The primary motivation for Hopfield networks is to discover the
patterns stored in the weight matrix.

When referring back to the RBM model, the probability distributions that underlie
the data are defined as

P v h
Z
e Z eE v h E v h, ,, ,() = =− () − ()∑1

,

P v
Z

e E v h() = ∑ − ()1 ,

where e E v h− (), = the exponential function, and the superscript is the negative value of the
energy function previously described.

RBMs and bipartite graphs share similar properties. As such, the activations from the
hidden units are mutually independent given the activations from the visible units such
that

P v h P h v P h v P h v
i

N

j
j

N

j| | , | |() = () () = ()
= =
∏ ∏

1 1

,

Figure 7-1.  Visualization of a Hopfield network

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

129

and the individual activation probabilities are

P h v b w v P v h a w hj i
j

N

i j i i j
i

M

i j=() = +








 =() = +

= =
∑ ∑1 1

1 1

| , |, ,σ σ ii









 ,

σ =
+ − −()

1

1 0e k x x

where a = activation unit.
The values of the visible units of an RBM can be derived from a multinomial

distribution, whereas the values of the hidden units are derived from a Bernoulli
distribution. In the instance that we use a softmax function for the visible units, we have
the following function:

P v h

a W h

a W
i
k

i
k

j
i j
k

j

k

K

i
k

j
i j
k

=() =
+











+

=

= =

∑

∑ ∑
1

1

1 1

|
,

,

exp

exp hhj











The optimization of the weights inside an RBM is performed traditionally by using
gradient descent via back-propagation until we’ve converged upon an optimal solution. One
of the most popular use cases for RBMs has been to populate missing values within a data
set, specifically in the case of collaborative filtering. Chapter 11 looks at a simple example of
performing collaborative filtering. If you’re interested in reading about performing this with
RBMs, search for the paper by Salakhutdinov et al. on using RBMs for collaborative filtering
(http://www.machinelearning.org/proceedings/icml2007/papers/407.pdf).

With respect to implementations of RBMs, there are a few packages that you may
feel free to explore, such as deepnet, darch, and other implementations online. If you
feel advanced enough, you may also seek to create your own implementation. In the
meantime, you should check for updates to deep learning frameworks to see if/when they
add RBM implementations.

Contrastive Divergence (CD) Learning
Developed by Hinton, contrasting divergence (CD) learning is a standard method of
training restricted Boltzmann machines. It’s based on the idea of using a Gibbs sampling,
run for k steps, where it is initialized with a training example of the training set and yields
the sample after k steps. It has broader applications as a training method for undirected

http://dx.doi.org/10.1007/978-1-4842-2734-3_11
http://www.machinelearning.org/proceedings/icml2007/papers/407.pdf

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

130

graph models, but its most popular use case is the training of RBMs. I’ll begin this
discussion by defining the gradient of the log likelihood:

h i j h
i j

h k

n

k i jp h v
E v h

w
p h v hv p h v hv∑ ∑ ∑∏() ∂ ()

∂
= () = ()

=

| | |
,

,

1

= () ()∑∑
−h h

i i i j

i i

p h v p h v hv| |

= () () = =()∑ ∑
−

−
h

i i j
h

i i j

i i

p h v hv p h v p H v v| | |1

= +










=
∑sig w v c
j

m

i j j i
1

,

Intuitively, we define the log-likelihood as the probability of a parameter having
some value. Above, we define the sig() function as the signum function, which returns the
sign of a input.

We define the gradient of the log-likelihood of training pattern v with the following
equation:

∂ ()
∂

= − () ∂ ()
∂

+ () ∂ ()
∂∑ ∑

ln θ |
|

, , , ,

v

w
p h v

E v h

w
p v h

E v h

wi j h i j v h i

,
,

,

jj

= () − () ()∑ ∑ ∑
h

i i j
v h

i j

i

p h v hv p v p h v hv| |

= =() − () =()∑p H v v p v p H v vi j
v

i j1 1| |

The mean of the gradient over training set S v v= …{ }1 , ,


 is given as

1 1

 v S i j v S
p hv

i j
p

v

w

E v h

w∈ ∈
()∑ ∑

∂ ()
∂

= −
∂ ()
∂












+

ln θ |

,
|

,

 
,

hh v
i j

E v h

w,

,
()

∂ ()





















,

=   −  





∈
() ()∑1

 v S
p hv i j p h v i jv h v h | ,

= −
() () ()

v h v hi j p hv q v i j p h v| ,

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

131

where

v S i j
i j data i j model

v

w
v h v h

∈
∑

∂ ()
∂

∝ −
ln θ |

,

∂ ()
∂

= − ()∑
ln θ |v

b
v p v v

j
j

v
j ,

∂ ()
∂

= =()− () =()∑
ln θ |

| |
v

c
p H v p v p H v

j v
i1 1

Now, returning to our initial discussion, we approximate the gradient of the
log-likelihood of training pattern v as the following:

CD v p h v
E v h

p h v
E v h

k
h h

k

k

θ
θ θ

, |
,

|
,

0 0

0

() = − () ∂ ()
∂

+ () ∂ ()
∂∑ ∑

The derivatives of each single parameter are calculated from the approximation
just given with respect to the expectations over p(v). In batch learning, we compute
the gradient over the entirety of the training set. However, there are instances where it
would be computationally more efficient to run this approximation over a subset of the
training data set, which we denote as a mini-batch. If we evaluate a single element of the
training set when performing this approximation, it’s known as online learning. In RBMs,
we refer to the reconstruction error as the difference between the actual input and the
predicted input, which falls drastically from the beginning of training moving forward. It is
suggested that this metric be used, but proceed with caution. CD learning is approximately
optimizing the KL divergence between the training data and the data produced by the
RBM and the Gibbs chain’s mixing rate. That said, the reconstruction error often can be
deceptively small if the mixing rate is also small. As the weights within the RBM increase,
typically we observe the mixing rate to move inversely. But a lower mixing rate doesn’t
always necessarily mean a model is superior to one in which there is a higher mixing rate.

RBM weights, similar to other deep learning models, are typically initialized using
values randomly sampled from a normal distribution or other infinitesimally small
values. With respect to the learning rate, the same considerations with gradient methods
must be taken into account, particularly being careful not to choose a learning rate that’s
too large or too small. With that being said, an adaptive learning rate may cause issues as
it will give the appearance that the model is improving due to a lower reconstruction
error, however, as explained earlier, this may not always be the case. It is recommended
that each weight update generally be about 10 3− times the current weights. Initial hidden
biases and weights typically are initialized by selecting them randomly from a normal
distribution, as is standard operating procedure for other neural network models.

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

132

Momentum Within RBMs
To increase the speed of learning within an RBM, momentum is a recommended method.
Imagine a gradient plot such as the one in Figure 7-2. If we can imagine the error
represented by a point on one of the circles, the dot gains “momentum” as it moves closer
to the minimum—but it loses momentum if it tries to go past that point and upwards
along the sphere on the opposite side.

Rather than the traditional gradient descent formula, the momentum method
incrementally affects the velocity of the parameter update. We define momentum as the
percentage of the velocity that is still present after a given epoch; we assume that over time
the velocity of a parameter decays. In effect, the momentum method causes the update
of the parameters to move in a direction that is not the steepest descent, as with a typical
gradient method except less intricate. When using the momentum method, it is suggested
that the momentum parameter, α, be set to .5. When it becomes more difficult to reduce
the reconstruction error any further, the momentum should be increased to .9. If we
notice instability in the reconstruction error—typically noted by occasional, incremental
increases—we reduce the learning rate by factors of 2 until this phenomenon subsides. We
define the momentum method of updating a parameter as follows:

∆θ α
θi i i
i

t v t v t
dE t

d
() = () = −()− ()

1 

Figure 7-2.  Gradient plot

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

133

Weight Decay
Weight decay can be viewed as a form of regularization, similar to that of the parameter
regularization seen in ridge regression and/or LASSO. In RMBs, we typically use a
Euclidean norm, which we denote as cost of the weights. Commonly, practitioners take
the derivative of the penalty term and multiply it by the learning rate. This prevents the
learning rate from changing the objective function we are trying to optimize. Weight
decay helps reduce overfitting in such a way that the solution achieved doesn’t have units
with unusually large weights or weights that are either always on or off. It also improves
the mixing rate, in reference to the Gibbs sampling we perform, making CD learning more
accurate. Geoffrey Hinton suggests that initially a weight cost of 0.0001 be used.

Sparsity
Generally, a good model is one that has hidden units that are active only part of the time.
The reason is that models with sparsely active units are considerably easier to interpret
compared to models that are densely populated with active units. We can achieve sparsity
by specifying the probability of a unit being active, performed by using regularization.
This probability is denoted by q and is estimated by

q q qnew ild current= + −()λ λ1 ,

where q
current

 = mean activiation probability of hidden unit
The natural penalty measure to use is the cross entropy between the desired and

actual distributions:

Sparsity penalty plogq p q∝− − −() −()1 1log

As suggested by Hinton, we seek to have a sparsity target as low as 0.19 and as high
as 0.01. We denote the decay rate as λ, which refers to the estimated sparsity value. This
should be no higher than 0.99 but higher than 0.9. We should reduce the sparsity cost
if the probabilities we calculate are clustering around the target value, and a general
suggestion for modeling this is to collect a histogram of mean activities when collecting
random samples.

No. and Type Hidden Units
Being that often the main consideration is that we seek to avoid overfitting. As such, we
generally will try to use fewer hidden units rather than more. Particularly, if the data
across the observations tends to be very homogenous, we also should try and use fewer
rather than more hidden units. However, an instance in which it is reasonable to use
more hidden units than normal would be if the sparsity target we’re trying to achieve
happens to fall within a very small range (or is very small itself). As for the type of units,

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

134

we can use Gaussian visible (and/or hidden), in addition to sigmoid and softmax units
denoted by the following, respectively:

E v h
v a

b h
v

h w
i v

i i

i j h
j j

i j

i

i
j i j, ,() = −()

− −
∈ ∈
∑ ∑ ∑

2

22σ σ,
,

E v h
v a h b v

h w
i v

i i

i j h

j j

j i j

i

i
j i j, ,() = −()

+
−()

−
∈ ∈
∑ ∑ ∑

2

2

2

22 2σ σ σ,
,

p
e x

=
+ −

1

1

p
e
ej

x

i
K x

j

i
=

=∑ 1

.

Deep Belief Networks (DBNs)
The final model I’ll address is the deep belief network (DBN), shown in Figure 7-3,
another innovation from Geoffrey Hinton. To make a DBN, we stack together restricted
Boltzmann machines and train the layers one at a time. Typically, we use DBNs for
unsupervised learning problems.

In a 2006 paper, Geoffrey Hinton and Simon Osindero, both researchers at the
University of Toronto, describe an algorithm useful for fast learning. The difficulty posed
by training networks with many hidden layers inspired the creation of a hybrid model. The
main attraction of this model, in relation to the training problem, is that by design there

Figure 7-3.  Visualization of a deep belief network

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

135

are complementary priors that allow us to easily draw from the conditional probability
distribution. This is done by starting with a random configuration a layer deep within the
network. We then pass through each layer of the network, in which the state of a given
layer is determined by a Bernoulli trial. The parameters for the Bernoulli function are
derived from the input received from the preceding layer in the initial “top-down” pass.

Fast Learning Algorithm (Hinton and Osindero
2006)
Data is generated from an RBM by taking a random state within a given layer and
performing Gibbs sampling over it. Simply stated, Gibbs sampling is a type of Monte Carlo
method in which we try to obtain a sequence based on a probability distribution that the
user specifies, but which the algorithm tries to approximate. Typically, the distribution
is multivariate. All units within a chosen layer are updated in a parallel fashion, and this
is repeated until we’ve determined to be sampling from the equilibrium distribution. In
Figure 7-4, we can see the visible and the hidden layers of an RBM.

Each weight uses a visible unit, i, and a hidden unit, j. When a data vector is
“clamped” on the visible units, the hidden units are sampled from their conditional
distribution, which is factorial. The gradient of the log probability is given by the following:

∂ ()
∂

= − ∞ ∞
log p

w
v h v h

i j
i j i j

v0

,

0 0

When we minimize the KL divergence, we in effect maximize the log probability.
If you would like to learn complicated models, break up the single model into smaller,
simpler models. After this point, these models can be learned sequentially. An example
of this sequential learning would be gradient boosting, as discussed in Chapter 3.
Reasonable approximations for W

0
 are learned based on the assumption that higher

layers derive the complimentary prior for W
0
. In practice, we can achieve this outcome

by assuming that all the weight matrices must be equal to one another. When solving this

Figure 7-4.  Visualization of restricted Boltzmann machine

http://dx.doi.org/10.1007/978-1-4842-2734-3_3

Chapter 7 ■ Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks

136

constrained optimization problem, learning becomes significantly easier than before, and
the problem itself is reduced to learning an RBM, whereupon good approximate solutions
are achieved via minimizing contrastive divergence.

Algorithm Steps
	 1.	 Under the assumption that all the weight matrices are tied,

learn W0.

	 2.	 Use W0
T to infer factorial approximate posterior distributions

over the states of the variables in the first hidden layer.

	 3.	 Learn an RBM model with respect to high-level abstractions
of the data generated by W0

T.

	 4.	 Repeat until convergence upon an optimal solution.

If the weight matrices in the higher levels of the model change, we are guaranteed to
see improvements in the model. The bound given becomes an equality if Q(. |)v0 is the
true posterior of the data. Hinton specifically suggests a greedy learning method, as
described in Neal and Hinton (1998). The energy of a given configuration of v0, h0 is
defined as

E p pv h h v h0 0 0 0 0, ,() = − ()+ () log log |

with a bound of

log log logp Q p Q
h h

v h v h v h h v
all all

0 0 0 0 0 0 0

0 0

() ≥ () ()+ ()  −∑ ∑| | | 00 0 0() ()log Q h v|

where h0= binary configuration the initial hidden layer units, p(h0) = the prior of the
current model h0, and Q(. |)v 0 = probability distribution over the initial hidden layer’s
binary configurations.

Summary
This brings us to the end of discussing autoencoders, RBMs, and DBNs. This also
concludes all the chapters on deep learning models. Now that we’ve discussed these
models, it’s time to turn our attention to experimental design and feature selection
techniques to help you increase the accuracy of your machine learning models.

137© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_8

CHAPTER 8

Experimental Design and
Heuristics

After having reviewed all the machine learning and deep learning models that will be
relevant to problem solving that you will encounter, it’s finally time to talk about useful
methods of structuring your research, both formal and informal.

Beyond just knowing how to properly evaluate the solutions developed, you should
be familiar with the concepts associated with the field of experimental design. Ronald
Fisher, an English statistician prominent in the 20th century, was one of the most
influential figures in the field of statistics. His techniques are frequently referenced when
performing experimentation and are useful to review even if you don’t use them explicitly.

Analysis of Variance (ANOVA)
ANOVA is group of methods that are used to study the variation among groups of
observations within data. An extension of the z and t test, and similar to regression, we
observe the interaction between the response and explanatory variables. We assume
that the observations within the data are independent and identically distributed (IID)
normal random variables, that residuals are normally distributed, and that variance is
homogenous. Among the multiple ANOVA models are the following ones discussed in the
rest of this section.

One-Way ANOVA
Used to compare three or more sample spaces’ means/averages to one another.
Specifically, it’s used in cases where the classification is performed by one variable/factor
that has two or more levels.

Two-Way (Multiple-Way) ANOVA
This is similar to one-way ANOVA, except this model can be used where there are two or
more explanatory variables.

Chapter 8 ■ Experimental Design and Heuristics

138

Mixed-Design ANOVA
In contrast to the prior models described, mixed-design ANOVA is distinguished by
having one of the factor variables be analyzed across subjects and the other factor be a
within-subjects variable.

Multivariate ANOVA (MANOVA)
This one is similar to one-way and two-way ANOVA, except it is particularly used to
analyze multivariate sample means, or when there are two or more explanatory variables
in a given data set.

Having addressed the various ANOVA models, the next section talks about the
method by which we evaluate the results: the F-statistic.

F-Statistic and F-Distribution
Named after Ronald Fisher, the F-statistic is the ratio of two statistical variances.
F-statistics are based upon the F-distribution, a continuous probability distribution (see
Figure 8-1). We denote this distribution as the null distribution of a given test statistic for
the F-test. Let’s assume we have variables A and B such that they both have chi-square
distributions with n and d degrees of freedom respectively such that

X

A
n
V
d

= ,

f x

n d

n d
n
d

n
d() =

+æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

æ
è
ç

ö
ø
÷

æG

G G

2 2

2 2

èè
ç

ö
ø
÷

é

ëê
ù

ûú

+æ
è
ç

ö
ø
÷

é

ëê
ù

ûú

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

Î

-

+

x

n
d

x

x

n

n d

2
1

2 2

1

0, ,¥¥()

Chapter 8 ■ Experimental Design and Heuristics

139

Say, for example, we’re considering a one-way ANOVA and assume that the means of
a set of populations are equal and normally distributed. We define the F-statistic as

F

SSE
k

SSR
n k

Y Y

k

Y Y

n k

i

i i

=

- -

=

-()

-()
- -

æ

è

ç
ç

ö

ø

÷
÷

æ

è

ç
ç
ç
ç
ç
çç

ö

1
1

2

2

å

å

ˆ

ˆ

øø

÷
÷
÷
÷
÷
÷÷

,

where k is degrees of freedom and n is the number of n response variables. The null
hypothesis states that a model created using only an x-intercept and a model created
by the user yield indistinguishable results (within a given confidence interval). The
alternative hypothesis states that the model the reader creates is significantly better
than a model featuring only the x intercept. Just as when testing any other measure of
statistical significance, this is determined based on the threshold we want to set. (90%
level of confidence, 95% level of confidence, and so on).

Let’s now use a toy example to apply and explain the concepts we just have
addressed. For this example, we will be using the iris data set:

#Loading Data
data("iris")

#Simple ANOVA
#Toy Example Using Iris Data as Y
y <- iris[, 1]
x <- seq(1, length(y), 1)
plot(y)

Figure 8-1.  PDF for F-distribution

Chapter 8 ■ Experimental Design and Heuristics

140

The data set will be utilized to create response and/or explanatory variables in the
following experiments. In the first toy example, we take the first column of the iris data set
(representing the sepal length of each observation) and make this explanatory variable.
However, before we perform a one-way ANOVA, let’s validate the assumptions necessary to
fit data to a linear model. We’ll begin by visually inspecting our data, as shown in Figure 8-2.

Immediately, we notice that the data is fairly linear in its orientation, featuring a
positive slope. This is a good first indicator, but we should dig deeper to ensure that the
rest of our assumptions are satisfied. In this instance, we’ll focus on plotting the residuals
of a fitted model. By residuals, I mean the quantity left over from the remainder of the
actual value minus the value predicted by the model. You should heavily utilize residual
analysis when working with linear models, but also in general, because they provide great
visual insight into how well a particular model works as well as the orientation of the data.
In Figure 8-3, we see the following plots created from fitting a linear model for x and y:

plot(glm(y~x))

Figure 8-2.  Visualization of data

Chapter 8 ■ Experimental Design and Heuristics

141

Note the graph in the top righthand corner of the four displayed in Figure 8-3. This
is a quantile plot, which effectively displays how much the distribution of the residuals
is normal. When closely inspecting the plot, we can see that a considerable amount of
the data lies on the dotted 45-degree angle line, which is the marker of normality in the
data. However—and as is the case usually—we notice that the tail ends tend to lift slightly
above this line. It’s useful to note that almost always, the data we will qualify as being
normally distributed will exhibit similar patterns. In the real world, most data tends to
be close to normally distributed when we have enough of it, but it’s unlikely that it will
be perfectly normally distributed. As such, we accept here that the data is normally
distributed and move onto validating the remaining assumptions. When the data is
normally distributed, it can be fit to a linear model and therefore we can reasonably
estimate the values within the range of the x variable.

Because we also require that errors exhibit constant variance, let’s turn our attention
to the plot in the top lefthand corner. Note here a plot with an x-axis that denotes the
value that the regression outputted and a y-axis detailing the value of the residual. The
horizontal line through the center of the plot represents the region where the fitted
value is equal to the actual value, or where the residual for an observation is zero. When
referring specifically to our data, we can see that generally speaking, the shape of the
residuals plotted seems to be consistent from the left to the right side of the plot. As such,
we would state that the residuals in fact do exhibit constant variance. If not, we would
notice that there would distinct patterns in the shape of the scatter plot that would either
become more exaggerated or less exaggerated from the left to right side of the plot.

Figure 8-3.  Residual plot

Chapter 8 ■ Experimental Design and Heuristics

142

Most importantly, pay attention to the plot on the bottom righthand side of the
figure. It addresses an important concept for understanding how certain data points can
alter the fitted line of the regression model. Leverage is described as a relative measure to
how large the difference in value a particular observation is from the rest of the data set.
Observations that specifically have high leverage are denoted in R by placing the index
adjacent to the data point. We define leverage with

h
X X

X X ni
i

jj

n=
-

-()
+

=å 1

1

where n = number of observations, X
i
 = ith observation of X, X = mean of all the

observations within X, and i = 1,2,…,n.
Highly related to leverage is the concept of Cook’s distance, which directly estimates

the influence a specific observation has on this regression model. We define Cook’s
distance as

D
e

s p

h

h
i

i i

i

=
-()

é

ë
ê
ê

ù

û
ú
ú

2

2 2
1

,

where e
i
2 = squared residuals of a given observation, s2= mean squared error of the model,

p = the number of parameters in a model, h
i
= ith diagonal of the H matrix where

H = ()-X X X X yT T1
, i = 1,2,…,n, and n = number of observations.

Typically, we consider an observation as being particularly influential if its Cook’s
distance value is greater than 1 or if its distance value is greater than 4/n. Which threshold
to use is ultimately up to you, but it’s obvious that this will depend on the case, and it’s
worth inspecting on an experimental basis which provides a data set with more or fewer
outliers, and how that would affect your end goal. If, for example, the purpose of an
experiment is anomaly detection, it might be foolish to reduce the threshold such that
more noise in the data set is qualified as a signal. When referring back to our specific
plot, we can see that a considerable amount of data points are being flagged as being
influential. We will keep this in mind as we move forward with our model choice.

When assessing all the plots in the data set, we can confidently say that although
there are outliers, and our assumptions aren’t met perfectly, the robustness of OLS
regression allows these slight deviations to be overcome. As such, it’s reasonable
to choose OLS regression as a model for this task, and therefore ANOVA will yield
statistically significant results. When executing the code, we observe the following:

simpleAOV <- aov(y ~ x)
summary(simpleAOV)

 Df Sum Sq Mean Sq F value Pr(>F)
x 1 52.48 52.48 156.3 <2e-16 ***
Residuals 148 49.69 0.34

Chapter 8 ■ Experimental Design and Heuristics

143

Just as when we use the summary() function on a glm object, we are given a measure
of its statistical significance. Instead of a Z-score, though, we’re given an F-score from the
concept addressed prior to this example and its relative p score. In this instance, we can
say with greater than 99% significance that the results we reject the null hypothesis. As
such, this model is a significantly better fit than an intercept-only model, and therefore
we can be more confident in its results. However, let’s say we’d like to compare more than
one fitted model. As such, let’s inspect what happens when we include more than one
variable, but study the interaction between the two of them as well.

As we can see in the following code, we use the second and third columns as
explanatory variables in this model. When fitting our model, we multiply both explanatory
variables together. When executing the code, we observe the following results:

#Mixed Design Anova
x1 <- iris[,2]
x2 <- iris[,3]
mixedAOV <- aov(y ~ x1*x2)
summary(mixedAOV)

 Df Sum Sq Mean Sq F value Pr(>F)
x1 1 1.41 1.41 12.9 0.000447 ***
x2 1 84.43 84.43 771.4 < 2e-16 ***
x1:x2 1 0.35 0.35 3.2 0.075712 .
Residuals 146 15.98 0.11

Our residuals as significantly smaller, and all of variables are statistically significant
within at least a 90% confidence interval. Let’s execute the following code and visually
compare the two models in Figure 8-4:

par(mfrow = c(2,2))
plot(glm(y ~ x1*x2))
dev.off()

Chapter 8 ■ Experimental Design and Heuristics

144

We can see that all of the assumptions we need to fulfill are done so significantly
better. Virtually all the residuals are normally distributed as displayed in the normal Q-Q
plot, the residuals exhibit constant variance, and a considerably smaller amount have
leverage. As such, when choosing between the two models we’ve defined, it’s reasonable
for us to choose the second of the two in comparison to the first.

This is a brief example of how we can use ANOVA in the course of model selection. In
Chapters 10 and 11, you will learn to effectively perform these same analyses with respect
to comparing deep learning and machine learning algorithms.

Let’s now discuss in greater detail how to structure our experiments, with the
guidance of Fisher’s principles.

Fisher’s Principles
Ronald Fisher, one of the most distinguished statisticians of all time, gave an explanation
of principles for experimental design. The following are descriptions of his principles, as
well as general advice with respect to how you might want to implement them:

	 1.	 Statement of Experiment: You should explicitly state the
scenario that inspired the experiment, very explicitly giving an
outline of the steps that will be taken place in the experiment
on a very high level. It is generally accepted that the
introduction should include a high-level overview of the topic,
and each section should describe a different component in
greater detail, logically progressing from beginning of the
experiment to the end.

Figure 8-4.  Mixed design ANOVA plot

http://dx.doi.org/10.1007/978-1-4842-2734-3_10
http://dx.doi.org/10.1007/978-1-4842-2734-3_11

Chapter 8 ■ Experimental Design and Heuristics

145

	 2.	 Interpretation and its Reasoned Basis: From the beginning, it’s
reasonable to give what you might expect to be the reasonable
outcomes. You should state the outcomes that you feel must
be considered, but realize that providing an endless list of
outcomes for those to whom you report is not likely to be very
helpful. Moreover, when discussing all the possible outcomes,
do so in a manner that provides actionable insights for those
reading your research. Research that does give actionable
insights self-evidently leaves more room for misapplication.

	 3.	 The Test of Significance: In the context of evaluating machine
learning and deep learning solutions, a simple suggestion is to
bootstrap the test statistics used to evaluate a given model. It’s
reasonable to assume that if you draw enough test statistics
over a long enough time, the data will be normally distributed.
From this point, a Z-test can be performed to determine
the reasonable level of statistical confidence one has in the
model.

	 4.	 The Null Hypothesis: This hypothesis should state that the
results shown have no significance, and any deviation
between testing populations is due to some extraneous
error such as improper sampling or deviations from proper
experimental practices. This must be a component of all
statistical testing.

	 5.	 Randomization: The Physical Basis of the Validity of the
Test: When performing a test, the results reached should
be performed in a manner such that this outcome was
not biased. In some cases, this may require randomized
observations of data to remove any inherent biases present
in the modeling of the experiment that would lead to some
results.

	 6.	 Statistical Replication: The results reached from a test should
and must be replicable. Results reached that are unreasonable
given the constraints inherent to the data set and environment
in which we expect to observe such an occurrence are not as
valuable as results that are replicable.

	 7.	 Blocking: The process by which different experimental groups
are compartmentalized such that different variations and
biases are reduced or prevented entirely from affecting the
results of an experiment.

Chapter 8 ■ Experimental Design and Heuristics

146

Plackett-Burman Designs
Created in the 1940s by Robin Plackett and J. P. Burman, Plackett-Burman designs are
a method of finding a quantifiable dependence of explanatory variables, which we call
factors in this case, of which each factor has L levels. The overall objective is to minimize
the variance of the estimates of dependencies using a limited amount of experiments. To
fulfill this goal, an experimental design is chosen such that each combination for any given
pair of factors appears an equal number of times throughout each experimental “run.”

The Plackett-Burman design requires a small number of experiments, specifically
a multiple of 4 up to 36, and that the design have N samples that can study up to k
parameters, where k = N – 1. In the case that L = 2, an orthogonal matrix in which each
element is either –1 or 1 is used. This matrix is also known as a Hadamard matrix. This
method is useful for identifying the main effects of different factors on the response
variable, such that we can eliminate factors that seem to have little to no effect. Plackett
and Burman themselves give specific designs for L equaling 3, 4 , 5, and 7.

Have a look at the matrix in Figure 8-5, which visually depicts a Plackett-Burman
design. When performing this design of experiments (DOE), you must write the
appropriate row as the first row of the design table. In this instance, we begin with a
+, -, +, -, +, +. This is a permutation of the sequence that appears in every row, which
represents a treatment combination. You can think of a treatment combination as a
unique combination of a feature set. The second row is then created by shifting sequence
in the prior row to the right by one column. This process is repeated for each of the
remaining rows. The final row features all negative elements. It’s important to recognize,
though, that Plackett-Burman designs can’t describe whether the effect on a given factor
will result in the effect of another, and it similarly can’t know the effects themselves given
a small enough design. This design is considered to be a preparatory step to data analysis,
and it’s suggested that alternative preparatory steps be juxtaposed alongside it in addition
to other steps taken subsequently afterwards.

Figure 8-5.  Plackett-Burman matrix

Chapter 8 ■ Experimental Design and Heuristics

147

Space Filling
These methods don’t require discrete parameters, and the sample size is chosen
independently from the total number of parameters. These are recommended for
instances in which the reader would like to create response surfaces, but it should be
noted that it becomes difficult to determine the main effects and interactions of a given or
set of parameters respectively.

Full Factorial
Full factorial is one of the most popular methods of experimental design, in which
N = 2^K, where k is equal to the number of factors. As an example, let’s have k factors
where L = 2. In this model, we don’t distinguish between nuisance and primary factors
prior to the experiment taking place. Given that L = 2, we will denote them as a high, “h”, or
low, “l”, level. High-level factors receive a value of 1, and low-level factors receive a value of –1.
We determine the interaction of the variables as the product of the individual factors.
From any experiment that is possible given the factorial constraint, the samples in which
the factors are changed one at a time are still a part of the sample space. This allows for
the effect of each factor over the response variable. Let’s now also define M as the main
intersection of a variable X. This is the difference between the average response variable at
the high-level samples and the average response at the low-level samples. If we have three
factors with two levels per factor, M for X_1 would be defined as the following:

M
y y y y y y y y

X
h h h h h l h l h h l l l l l l l h l h l l h

1 4
=

+ + +
-

+ + +, , , , , , , , , , , , , , , ,,h

4

If we wanted to see the interaction between two or more factors, the equation would
be the same, except the interaction of the variables would be represented by the product
of the variables, rather than the individual values a factor possesses at a given state.
Both of the main effects and the intersection effect statistics give an effective method
of determining the degree to which individual, or combinations of, factors affect the
response variable. Full factorial designs do not complicate the data in any such manner
and present a transparent method of examining variable effects. If there are more than
two levels, an adjustment must be made to take the average effect of all the levels on a
given response variable, where the denominator is N, such that

y
y

N

i j l mm

L

l

L

j

L

i

L

=
åååå , , ,

4321

Chapter 8 ■ Experimental Design and Heuristics

148

Halton, Faure, and Sobol Sequences
Within the umbrella of space filling techniques, many of these are motivated by pseudo-
random number generators. Pseudo-random numbers are series-generating sets that
pass randomness tests. We denote a pseudo-random number generator as the following
function:

f g f g: , , , ,0 1 0 1 1 21, , k[)®[) = () = ¼-k k

We must choose a value of ϕ that gives a uniform distribution of γ
k
. A popular

method to achieve this is the Van der Corput sequence, where we have a base, b, ≥ 2 and
successive integer numbers n are expressed in their b-adic expansion form such that the
following is true

n a b
j

T

j
j=

=

-å
1

1 ,

jb : N , ,0 0 1®[)

jb
j

T
j

j
n

a

b
() =

=
å

1

where a represents the coefficients of the expansion.
Halton sequences use base-two, base-three, and base-five for Van der Corput

sequences in first, second, and third dimensions respectively. This pattern continues
such that prime numbers are used for the base in every successive dimension. With this
being said, multidimensional clustering causes high correlations between dimensions,
effectively defeating the purpose of experimental design in and of itself. In an effort to
combat this problem, Faure and Sobol sequences use only one base for all dimensions
and a different permutation of the vector elements for each dimension.

A/B Testing
When designing applications, websites, and/or dashboard applications, it’s useful to
determine the effect changes in certain functionality have on the product. We can imagine,
for example, that an engineer is trying to determine with some statistical certainty whether
the implementation of a new feature has had an effect on acquiring new users. For such
situations, it’s recommended that the person use something known as A/B testing.
Broadly, A/B testing refers to the statistical hypothesis testing methods used to compare
two data sets, a control group and a test group, which are A and B respectively. We can also
modify the test such that we can test A and multiple additional control tests.

Chapter 8 ■ Experimental Design and Heuristics

149

The motivation for A/B testing is simple in that the development of different
products, regardless of whether they have machine learning or deep learning capabilities,
allows us to determine with statistical confidence whether we have made improvements
from the original iteration to the next. That said, we can use these processes as a series
of experimentations to iteratively move from one generation of software to the next to
observe the improvements in efficiency. Commonly, the beta-binomial hierarchical
model is one of the most popular methods by which we can A/B test a control group over
a multiple test groups. As such, we will review this model. First, however, let’s review a
simple two-sample A/B test.

Simple Two-Sample A/B Test
Assume that here we’re comparing one control group against one test group and that
we’re trying to see whether our new website generates more clicks due to feature changes.
We will firmly show that although this test is stable for two examples, you should avoid
using this for more than two samples. Let’s say that we have two data sets representing the
different attributes of the various websites and we want to test within a 95% confidence
level. For this, we would use a t-test. Now let’s also assume after the t-test is performed,
we observe that the difference in the means is significantly different and that x2 is
significantly improved from the prior model. Now let’s assume that we keep on making
different versions of our web page and continuously try to use this model. After nine
different tests, x2 still is proving to be the most superior model. But when we run x2, we
actually see no difference in improvement from clicks from x2 to the other websites. This
common problem with two-sample A/B testing is due to false positives.

Next, I’ll show the probability of ten individual hypothesis tests showing correct results
via the binomial distribution. Let event A = x2 let’s say better than nine other counterparts
at 90% confidence interval, B = x2 is better than nine other counterparts at 95% confidence
interval, and C = x2 better than nine other counterparts at 99% confidence interval:

P P B P CA() = = () = = () = =. . %, . . %, . . %90 34 87 95 59 87 99 90 4410 10 10

Stated simply, under events A, B, and C we could expect that our experiments yield
6.5, 4.013, and .95 false positives. Although the 99% confidence interval performs the best
in this example, we can see under the other confidence intervals why this methodology
would become a problem. As such, for testing multiple groups, it is recommended that we
use the beta-binomial distribution.

Beta-Binomial Hierarchical Model for A/B Testing
Bayesian statistics is a school of thought on the concept of probability. Here, it becomes
the theoretical underpinning for this model and also can be used to provide modified
hierarchical models with respect to the distribution. In Bayesian statistics, we often refer
to the prior and posterior distributions. The prior distribution refers to the probability
distribution with respect to some parameter (data that we have already acquired),
whereas the posterior refers to the probability distribution of some parameter with
respect to the data (data which we want to acquire). The prior distribution and the

Chapter 8 ■ Experimental Design and Heuristics

150

posterior distribution form a conjugate distribution. For ease of analysis, we typically
seek to use distributions within the same family for the respect prior and posterior
distributions, and that’s why in this hierarchical model we are using the beta and
binomial distributions.

The beta distribution is a probability distribution bound within the interval [0,1]
with parameters α and β that ultimately control the shape of the distribution. Typically,
we use the beta distribution to statistically model random variables. As stated earlier,
within the same family as the beta distribution is the binomial distribution. This is often
used to model probability distributions that feature independent binary outcomes, such
as coin flips. We define the probability density function for both the beta and binomial
distributions (see Figures 8-6 and 8-7) respectively as

x x

a

a b

a b
b

- --()
() ()

+()

1 1
1

G G
G

,

n

k
p pk n kæ

è
ç

ö

ø
÷ -() -

1

where n = the number of successes, k = total number of trials, and p = the probability of
success.

Figure 8-6.  Beta distribution

Chapter 8 ■ Experimental Design and Heuristics

151

We then model our posterior expectations from the beta distribution and the prior
distribution as the binomial, whereupon we compare the difference in means between
the prior and the posterior distributions to compare website performance.

Feature/ Variable Selection Techniques
Now that we’ve discussed several experimental design models, let’s talk about steps
you would want to take after you have more of an understanding of the factors in a
given data set. Variable selection seems to be directly related to experimental design,
but this section will discuss more specific algorithms to be used for the purpose of
reducing dimensionality and less exploratory methods for analyzing variables and their
interactions with the response variable. This is important for a multitude of reasons,
but can often be a major element of optimizing machine learning algorithms when
deploying them. Feature selection is a much less tedious process than parameter
tuning, particularly in deep learning models. As such, it can be a quick way to creating
models that train quicker and produce more accurate outputs. As with many techniques
described earlier, caution must be taken because too much feature selection can result in
creating overfitted models.

Backwards and Forward Selection
Backward selection is one of the simplest variable selection methods and is particularly
common when using simple or multiple linear regression. Preliminarily, you should take
the data set with all explanatory variables and regress them against the response variable.
After this step, choose a statistical significance level appropriate for the given situation
(85%, 90%, 95%, and so on). One variable at a time, we remove the variables with the
lowest statistical significance from the data set (such as the statistical significance yielded
from the summary() function when using a glm() model). We the regress the new subset
of the original data set and continue until all the variables in the data set are statistically
significant. In forward selection, the process is the same as the prior method, except the
distinction is that you start with a model with no variables, add variables, and check their

Figure 8-7.  Binomial distribution

Chapter 8 ■ Experimental Design and Heuristics

152

statistical significance. If they’re at or above the threshold, they should be added. If not,
they should be removed. Considerations to keep in mind when using these methods are
to reduce statistical noise considerably but to avoid a model that’s overfitted to the test
data, particularly if out-of-sample prediction is the end goal to the model being built. You
should also be careful to not remove too many variables as to reduce performance.

For deep learning, some models have feature selection embedded into them.
Specifically, certain layers within CNNs arguably exist for the purpose of eliminating
noise such that the data left is rich with information. Specifically, pooling layers can be
thought of as doing this. By reducing the input size, we ease the computational load from
input to output while also assisting the algorithm in more accurately tuning the weights
between these layers and ultimately classifying an image.

Beyond using P-values, you can choose other statistical criteria to determine which
variables to retain/remove. Among those most common are Akaike information criterion
(AIC) and Bayes information criterion (BIC):

AIC k L= -2 2ln(),

BIC n k L= - ()ln() l ,2 n 

ˆ ˆ| ,L p x M= ()q

where L is the max likelihood function for the model, q̂ are the parameters, and k is the
number of parameters.

AIC and BIC are very closely related. AIC is based within the field of information
theory, and the goal is to choose a model with the minimum possible AIC value. By
definition of the function, the greater the magnitude of the log-likelihood, the smaller
the AIC value. Henceforth, models that are more closely fit to the data will ultimately
have lower AIC values. BIC is ultimately motivated by Bayesian statistics and is similar
to AIC. BIC scores specifically are used to evaluate the performance of a model on a
training set, where we choose the model that yields the smallest BIC. In particular,
BIC penalizes models that have more parameters rather than less. Because of this, BIC
inherently prefers models that do not overfit to the data set, hence making a criterion
by which you’re encouraged to choose a model that generalizes to the data you’re
analyzing. Note that the BIC can’t handle complex collections of models, and it should
only be assumed to be valid in instances of when n is substantially greater than k. With
respect to considerations for AIC, the AIC values computed must be across the same data.
Specifically, it’s not an objective measure such as the coefficient of determination.

Principal Component Analysis (PCA)
Principal component analysis (PCA) is one of the most commonly used variable selection
techniques that can exclusively be used for numerical data. Mentioned earlier in several
examples, PCA is a statistical method used to reduce dimensionality of data sets. Simply
stated, we transform the data into new variables called principal components and

Chapter 8 ■ Experimental Design and Heuristics

153

eliminate the principal components that explain negligible amounts of the variance
exhibited within the data set. The benefit of this technique is that we preserve the
variance of the data set while being able to perform visual and exploratory analysis much
easier than prior to the transformation.

Our goal is to find the linear function of random variables from the x vector
with the vector of constants from the alpha vector with the maximum variance. This
linear function produces our principal components. Be that as it may, each principal
component must be in order of decreasing variance, and each principal component must
be uncorrelated with each other. Our objective is the following:

MaximizeVar x alphak k
i

k¢() =a a å

We seek to use constrained optimization, because without a constraint the value of
a

k
 could be infinitely large. As such, we’ll choose the following normalization constraint,

where ¢ =ak ka 1.

The Lagrange multiplier method is a tool for constrained optimization of
differentiable functions. In particular, it’s helpful for finding local maxima and minima of
a respective function subject to a given constraint. Within the context of the experiment,
the Lagrange multipliers are applied as follows

¢ - ¢ -()a l ak k k ka aå 1 ,

d a a

d
k k k k

k

¢ - ¢ -()()
=

a l a
a

å 1
0,

å a lak k- = 0,

å a l ak k k=

with the final step of the equation yielding the eigenvector α
k
 and its corresponding

eigenvalue λ
k
. Our objective is to maximize λ

k
, and with the eigenvectors defined in

decreasing order. If λ
1
 is the largest eigenvector, then the first principal component is

defined as å a la1 1= . In general, we define a given eigenvector as the k-th principal
component of x and that the variance of a given eigenvector is denoted by its
corresponding eigenvalue. I’ll now demonstrate this process when k = 1 and when k > 2.
The second principal component maximizes the variance subject to being uncorrelated
with the first principal component with the non-correlation constraint being as follows:

cov x x¢ ¢() = ¢ = ¢ = ¢ ¢ = ¢ =a a a a a a a la la a1 2 1 2 2 1 2 1 1 1 2 2 0å å ,

¢ - ¢ -()- ¢a a l a a fa a2 2 2 2 2 2 11å

Chapter 8 ■ Experimental Design and Heuristics

154

d

d

¢ - ¢ -()- ¢()
= - - =

a a l a a fa a
a

a l a fa2 2 2 2 2 2 1

2
2 2 2 1

1
0

å
å ,

¢ - ¢ - ¢ =a a a l a a fa1 2 1 2 2 1 1 0å ,

0 0 1 0- - =f ,

f = 0,

å a l a2 2 2 0- =

This process can be repeated up to k = p, yielding principal components for each
of the p random variables. Limitations associated with PCA are numerous, though,
and must be considered for the problem type. Foremost, PCA assumes that there are
linear correlations across features. Obviously, this is not necessarily always the case
in a practical context and therefore renders the results yielded by PCA questionable.
Secondly, PCA only can be used on numerical data sets and the downfalls of numerically
encoding categorical data (discussed later in this chapter) can add implicit biases that
render the results of this technique useless. Moreover, PCA explicitly assumes variance is
the most important statistic with regard to analyzing a data set. Although variance is often
an important statistic, in some problem cases it might not necessarily be.

An example of how PCA can be applied to deep learning is through the process
of PCA whitening. When we refer to whitening, we mean the process of making the
input data less homogenous, in an effort to make the data less homogenous from one
observation to another. In the instance of a CNN, this can be of great use for image
classification. Specifically, in image data many pixels adjacent to one another often have
similar, if not the same, values within a large region.

An example of this would be to look at the MNIST data set and see which patches
of the image are black versus which are white. PCA whitening instead yields an
eigendecomposition of the matrix such that this homogeneity is removed. As such,
the features of each individual are significantly less similar than in their original form,
but the variance within the data is preserved, as is a benefit when performing an
eigendecomposition on a matrix.

Factor Analysis
Factors are unobservable variables that are highly correlated with one another and
that influence a given explanatory variable. Unlike the ultimate purpose of PCA,
dimensionality reduction, factor analysis seeks to locate independent variables.
Moreover, we would like to determine what influence the factors have on the surface
attributes. It’s built from the assumption that observed variables can be reduced to a
subset which exhibit similar variance. In factor analysis, we require that the data must be
normally distributed and that there are virtually no outliers within the data set. We also

Chapter 8 ■ Experimental Design and Heuristics

155

should seek to analyze data that is numerous in it’s observations, and the correlations,
while not nearly linear as to avoid multicollinearity, must be moderate to high across the
data set. The typical factor analysis model is given by

X a F a F a F e j pj j j jm m j= + +¼+ + = ¼1 1 2 2 1, , , ,

Where e
j
 = the unique and specific factor to a given explanatory variable, j = factor

loadings, X
j
 = an explanatory variable, and m = the underlying factors

Factor loadings can be thought of as weights, where they denote the degree to which
they influence a given factor with respect to an individual variable. Surface attributes are
denoted as the individual explanatory variables. Typically, a factor analysis model will
yield factors such that there are no correlations between the individual variables, so we
have independent variables, similar to principal components. It should be noted that
factors are not created but are revealed based on correlations between surface attributes.
Factors, which are unseen, can be intangible yet conceivable. For example, we could
image factors within a given experiment being an individual’s reading or writing ability
when compared to one individual. These attributes aren’t objective with respect to how
we measure them, but when assessing a standardized test with a reading and writing
section, for example, obviously affect a given person’s score.

Limitations of Factor Analysis
Factor analysis can find a method of obtaining patterns in data generated even from
random numbers. As such, one should keep in mind that if structure can be found
in random data, than the patterns they appear to observe in their structured data
could also be misconceived. Moreover, the structure found in the data ultimately is a
derivative of the variables/data set inputted into the factor analysis. Simply stated, there
are not objective patterns in data sets that make themselves apparent, and ultimately
restructuring of data sets/variables can cause significant divergence in the results yielded
by a factor analysis. As such, how one interprets the results of a factor analysis ultimately
is far more subjective than it may seem. That said, it is recommended that factor analysis
be used alongside statistical methods and/or the data be structured such that it conforms
to assumptions known to be true within the domain of the problem being handled.

Handling Categorical Data
Among all of the difficulties that you might come across, one of the greatest challenges
comes with handling and analyzing categorical data, or data that is numeric. Typically,
we often encounter categorical data as a factor variable with different levels. This section
talks about some common problems that will be encountered along with possible
solutions, with considerations to keep in mind.

Chapter 8 ■ Experimental Design and Heuristics

156

Encoding Factor Levels
For example, let’s say we have a data set where we are analyzing one variable, which is all
of the streets in a given neighborhood. This is particularly interesting example because
the streets could all be names, (such as “Maple Street,” “Spruce Street,” “Redwood Street,”
and so on), or they could all be numbers (1st Street, 2nd Street, 3rd Street, and so forth).
If the streets are names, we can take the approach, to encode the streets by number. This
is an easy way to give each variable a unique identifier, but it has limitations. Machine
learning algorithms will interpret the levels as an indication of value rather than a
unique identifier, which in essence gives no descriptive data about the “quality” of the
observation. To be specific, if we label “Maple Street” as 1 and “Spruce Street” as 2, many
algorithms might interpret Spruce Street to be of higher importance than Maple Street,
when there is no evidence to determine this. When considering the case of the numbers,
this same problem is present, but it’s just implicit and not induced by label encoding.
Another limitation of this technique is that if the encoded variable is highly correlated
with other variables, multicollinearity might be introduced to the data set where it
otherwise would not have existed.

Categorical Label Problems: Too Numerous Levels
In keeping with the example of using street names, we can imagine many cities where this
would cause us to have a factor with hundreds or even thousands of individual streets.
Although a variable with variation yields better results than a variable with absolutely
none, this can also cause difficulties when performing model evaluation. As such, in
these instances it can be a good idea to encode the variables and use a classification/
regression tree or random forest model. Also, a suggested method is to encode the
variables and use K-means clustering to get the cluster number, whereupon we replace
the levels with this variable. Although this still in many ways has the bias of the encoded
variable we discussed before baked into the clustering observation, it’s nonetheless a
method of reducing the levels effectively and should be explored when necessary.

Canonical Correlation Analysis (CCA)
Very closely related to PCA is canonical correlation analysis (CCA), a method of finding
linear combinations of two variables such that they have the maximum possible
covariance with each other. Typically, this is a data preprocessing technique and is
appropriate in the same instances where multivariate linear regression would be used,
but specifically when there are two sets of multivariable data sets that we want to examine
the relationship between:

Given two vectors X Y m x n, Î and directions a bÎ Î m nand :

a b a b

a b

, ,= ()
= =

argmax cov X Y

X Y
2 2

1

Chapter 8 ■ Experimental Design and Heuristics

157

Wrappers, Filters, and Embedded (WFE)
Algorithms
When assessing some of the more advanced variable selection techniques, we approach
WFE algorithms. Wrapper algorithms are distinguished by running each feature subset
possible over the data and evaluating the model performance, leading to the selection of
a subset that performs the best with a given model. Embedded algorithms are explicitly
written into the process of a model (L1 regularization with LASSO). Filter methods
attempt to assess the merits of the feature by looking at the data itself rather than
evaluating its performance on the methods alone.

Relief Algorithm
Designed by Aha, Kibler, and Albert in 1991, the relief algorithm is a feature-based
weight algorithm inspired by instance-based learning. Each feature is assigned a weight
denoting its relevance of the feature to the target. This algorithm is randomized and the
updates of relevance values depend on the difference between the selected instance and
the two nearest instances.

Algorithm
	 1)	 Given x y w

In n n
, , ,(){ } =

=1

0 1N
set T = number of iterations,

s = kernel width, q = stopping criterion.

	 2)	 For t = 1 : T

		 a.	 Calculate pairwise distances w.r.t. wt-1.

		 b.	 Calculate P
m

, P
h
, and P

o
.

		 c.	 Update weights.

		 d.	 If w wt t- <-1 q , break.

Other Local Search Methods
Many of the algorithms addressed in the latter parts of this text will draw inspiration from,
if not be directly related to, this subfield of optimization, typically used for computationally
intensive optimization problems. We consider all possible solutions as being in a set we
denote as the feature space or search space. The target is the global optimum that satisfies
the optimization problem we seek to solve. Local search algorithms are initiated with a
random element from the feature space and over each iteration chooses a new solution
based on information yielded from the current neighborhood. After this stage, the
algorithm will move to a given neighborhood in the nearest vicinity, but depending on the
problem the search algorithm may choose more than one neighborhood.

Chapter 8 ■ Experimental Design and Heuristics

158

Hill Climbing Search Methods
Prior to the development of machine learning that occurred in the 1980s and 1990s, hill
climbing tended to be one of the more popular search methods. Hill climbing forms
the motivation for many newer search methods described in this chapter and is still a
useful technique with respect to parameter tuning. As with other search methods, hill
climbing seeks to optimize an objective function within the locality of the current point.
Hill climbing works best for functions that have one maximum or one minimum, so as
to allow the algorithm to find the solution of the problem with relative ease. However, it
faces many problems for functions with an abundance of local minima. To combat this,
many different heuristics and methods, like random restarts to avoid local minima and
stochastic neighborhood selection for the search trajectory, have been added to the basic
hill climbing algorithm.

Genetic Algorithms (GAs)
Genetic algorithms are considered a direct outgrowth of the field of artificial intelligence,
as they directly mock the process of evolution. In this algorithm, several subsets of the
total feature space “evolve” so that the next subset is statistically better than the last
iteration. The evolution process stops when a better subset can’t be created, and the best
of the subsets is chosen as the answer. The advantage of this algorithm over others is that
genetic algorithms can accumulate information about a given feature space over many
iterations, the process is inherently parallel so there is less probability of being stuck in
local minima, and the algorithm in and of itself is relatively easy to understand. Among
GAs’ limitations are the fact that if there is an abundance of local optima, the GA doesn’t
always converge upon the global optimum. Also, this algorithm is likely not an optimal
choice for deployment, because it has difficulty scaling, since the feature space size
increases exponentially with the number of possible subsets.

Algorithm
•	 Choose an initial random population of solutions to choose from.

•	 Evaluate the solution based on some statistical criterion, such as
MSE.

•	 Select the best individuals to be used.

•	 Generate new individuals by “mutating” the prior selected
solutions.

•	 Evaluate the fitness of the new solutions.

•	 Stop when some criterion has been reached, such a loss
tolerance.

Chapter 8 ■ Experimental Design and Heuristics

159

Simulated Annealing (SA)
Among the heuristic techniques we will cover, one of the few probabilistic models assessed
is SA. Inspired in name from annealing in metallurgy, SA imitates the effect of slowly
cooling as slowly decreasing the probability of accepting worse solutions. We consider
each solution as a state and that the neighborhood in which the algorithm can search
progressively gets smaller. The algorithm converges upon a solution either after the feature
space has been entirely searched, or another stopping criterion has been reached. 1

Algorithm
•	 T = Temperature = hot, Frozen = Stopping Criterion.

•	 While (Temperature != Frozen), move to a random point in the
feature space and compute ∆ Engery.

•	 If ∆Energy < 0 or loss tolerance, accept new state with probability

e
E

T
-
D

 while system in thermal equilibrium at current T.

•	 If (E decreasing over last few iterations), T T itertion= +()1 ,
Else T = Frozen.

The greatest difficulty with SA is the amount of parameter tuning required, which
becomes time consuming as the amount of feature (and corresponding feature space)
increase in size. Furthermore, there isn’t a general baseline or rule of thumb for any of
these parameters, further increasing the difficulty of this technique with heavily changing
data sets. It should likely be considered more of a research technique than one you would
deploy in an algorithm.

Ant Colony Optimization (ACO)
Ant colony algorithms (ACOs) are a set of optimization algorithms first introduced in
the 1990s. Most useful for combinatorics problems, ACOs been used for tasks such as
vehicle routing, computer vision, feature subset selection, quantitative finance, and other
fields. The intuition is based on the activities of swarms of ants, and the ultimate goal is
typically finding the best options given set of randomized options from a feature space. We
can imagine an ant colony in this context to be a graph with nodes connected by edges,
where each node represents one of the k features in the data set. The ant travels along
the edges, “dropping pheromones” to attract more ants along subsequent iterations. The
pheromones by design decay over time, but ants who travel along the shortest possible
edges from point x to point y deposit more pheromones along a given path. Because ants
are attracted to paths with more pheromones, this acts as the method by which an optimal
solution is found. Each “ant” moves from one given state with a probability given by

px y
k xy xy

j J xj xj
i
k

, =
()

()Îå
t h

t h

a b

a b

Chapter 8 ■ Experimental Design and Heuristics

160

where 𝓇 xy
a = pheremone deposited on a given path, η xy

b = the proportion of the distance
from x : y to the sum of all paths'distances, β = tuning parameter, J

i
K = neighbor nodes that

have not been visited
With pheromones updated as

t r t txy xy
k

xy
kt +()® -() +å1 1 D

where τ
xy

 = pheremone deposited, and ρ = pheremone evaporation rate.
We denote Δτ

xy
 as the amount of pheromone dropped on a given path by an

individual ant given by

Dt xy
kQ L if kth ant travels along xy

elsewhere
=
ì
í
î

/ ,

,0

where Q = some constant, and L
k
 = a loss function defined by the user.

Although ACO problems are successful for instances in which there aren’t very
large numbers of features, and it typically performs better than simulated annealing and
genetic algorithms, the problems become exponentially more difficult to solve with the
addition of more nodes. In addition to this, although convergence is guaranteed, it is
uncertain as to when convergence actually will occur.

Algorithm
•	 Initialize by creating full solution space.

•	 While stopping criterion not reached, position each ant at a given
starting node.

•	 For each ant, choose next node via state transition rule.

•	 Apply pheromone update until every ant has reached a given
solution.

•	 Evaluate each solution based on the selection criterion.

•	 Update best solution and apply pheromone update on this path.

•	 Repeat until convergence upon global optimum.

Variable Neighborhood Search (VNS)
VNS is a family of feature subset selection algorithms that are meant to deal with
combinatorics challenges and henceforth provide guaranteed convergence. Developed
in the late 1990s, VNS was inspired by the desire to find solutions for discrete and
continuous optimization problems (linear and nonlinear programming problems are an
example). The assumptions within VNS are that a local minimum with respect to a given
neighborhood is in theory perhaps not the local minimum in another neighborhood, that

Chapter 8 ■ Experimental Design and Heuristics

161

local minima are relatively close to each other between one or more neighborhoods, and
that a global minimum are local minima for all neighborhoods within the solution space.
Among the algorithms available for VNS with respect to local search methods, there are
related extensions that are more specified for given tasks. For feature-based selection, we
will look at the filter-based algorithm for VNS.

Algorithm
•	 Find an initial solution S.

•	 Select the set of neighborhoods N
k
 for k = 1, …, j where j = # of

neighborhoods and a stopping criterion.

•	 Set k = 1 and generate a random point S′ from the kth
neighborhood of S S N Sk¢Î ()() .

•	 Apply a search method such that the stopping criterion, if based
on an objective function, is closer to being reached.

•	 If this solution is better than the prior solution, update the
solution to the current one. Else, set k = k + 1 and retain the
current solution.

•	 Continue until convergence upon global optimum or stopping
criterion is reached.

Typically, we choose an information quotient or linear correlation as an evaluation
function within these algorithms, but this is ultimately a parameter that can be altered.
If you feel more advanced, feel free to implement your own deep learning and/or
machine learning algorithms where instead of traditional gradient descent, you use one
of the aforementioned search methods for parameter optimization. Although this can
be difficult, it will provide you with an excellent exercise to get familiar with specific
algorithms, while also helping you understand how performance is affected by specific
operations within a given algorithm. That brings us to a similar topic with respect to
refining existing machine learning algorithms: reactive search optimization.

Reactive Search Optimization (RSO)
RSO is a relatively new innovation in the field of optimization. It produces interesting
implications that are worth mentioning for more advanced readers. The purpose of RSO
lends itself to being of particular use to those who intend on creating machine learning
platforms and tools that are intended for users who aren’t as technically adept as the
typical machine learning engineer. Intelligent optimization refers to a more specific area
of research within RSO, but is nonetheless relevant. In this paradigm, we evaluate the
effectiveness of different learning schemes. There are broadly three, which we will refer to
as online, offline, and a combination of the two with varying proportions. This is the idea
of implementing algorithms in different environments such that they have different search
histories, which ultimately affect the action of the epoch that is currently in session.

Chapter 8 ■ Experimental Design and Heuristics

162

Reactive Prohibitions
Prohibition-based techniques and intelligent schemes, in contrast to basic heuristics such
as local search, are what provide the intellectual motivation for tabu search. Tabu search
methods mainly gained their initial traction in the 1980s, and it has proved a large area of
research given the fertile ground it occupies. Tabu search (TS) is particularly noteworthy
when comparing it against local search methods because of the use of prior information
gleaned from the data set, and how that influences the new iterations’ outcomes. Assume
that we have a feasible search space that is composed of binary strings with a length
L

L
: , ={ }0 1, X is the current configuration, and N(X) is the previous neighborhood. The

following equation is related to tabu search that is prohibition-based

X N Xt
A

t+ = ()()1 BestNeighbor ,

N X N X X XA
t t t+ + +() = () ¼()1 1 0 1ALLOW , , ,

where the ALLOW function selects a subset of N X t+()()1 such that it is dependent on the

entire search trajectory X X t0 1, ,¼ + .

Tabu search algorithms are classified in many ways, but the initial distinguishing
factor I’ll elaborate on is deterministic versus stochastic systems within TS algorithms.
The most basic form of tabu search is denoted as strict tabu search. In this algorithm, we
observe N(X) to have the following value:

N X X N X s t X X XA
t t t+ + +() = Î () Ï ¼{ }{ }1 1 0 1. . , ,

When introducing a prohibition parameter, T, that determines how long a move will
remain prohibited after the execution of its inverse, we can obtain two algorithms that are
different from strict tabu search. A neighbor is allowed if and only if it is obtained from
the current point by applying a direction to the search such that its inverse has not been
used during the last T iterations, such that

N X X X s t t TA
t t+ -() = = () < -(){ }1 1m m . . LastUsed ,

where LastUsed() is the last usage time of move μ. If T changes with the iteration
counter, the general dynamical system that generates the search trajectory comprises an
additional evolution equation for T such that

T T X Xt t t= ¼-React ,(, , ,1 0

Chapter 8 ■ Experimental Design and Heuristics

163

N X X X s t t T XA
t t t+ - +() = = () < -(){ }

= -

1 1 1m m . . ,LastUsed

Best Neighborr N XA
t()()}

For basic moves acting on binary strings, m m= -1.

For stochastic models, we can substitute prohibition rules with probabilistic
generation-acceptance rules with large probability for allowed moves, and small
for prohibited ones. Stochasticity can increase the robust nature of TS algorithms.
Stochasticity can limit or remove the benefit of memory-induced activity, as is the main
draw to tabu search. Robust tabu search features a prohibition parameter that is randomly
changed between an upper and lower bound during the search. In fixed tabu search,
stochasticity can be added by randomly breaking ties, or the cost function decrease is
obtained by more than one candidate of the Best-Neighbor() function. This same effect is
observed when implementing stochasticity in reactive tabu search.

Fixed Tabu Search
Let us assume we have a search space X such that X b b b=[]1 2 3, with a cost function

f b b b b b b b b b1 2 3 1 2 3 1 2 32 3 7, ,[]() = + + = , where b is a 3-bit string. The feasible points will be
the edges of the 3-dimensional cube shown in Figure 8-8. The neighborhood of a given point
is the set of points that are connected with edges. The point X^0 = [0,0,0] with f(X^0) = 0 is a
local minimizer due to the fact that other moves produce a higher cost.

Figure 8-8.  A feature space with error function, E, and f value = [x,y,z], using tabu search

Chapter 8 ■ Experimental Design and Heuristics

164

We will define two parameters that will be of use to testing the efficiency of a given
tabu search epoch, denoted as the Hamming distance and the minimum repetition
interval. The Hamming distance describes the distance between the starting point and the
most successful point along the search trajectory, and the minimum repetition interval
describes the amount of times a similar move was visited along a given search trajectory.
These parameters’ equations are given by the following:

H X X Tt t+() = £ +1 1, ,t t ,

X X R Tt R t+ = Þ ³ +()2 1

Moving forward, we should direct our attention to avoiding attractors of the search
trajectory, where we define attractors as local minima generated by deterministic local
search. If the cost function is lower bounded, and starts from an arbitrary point, it will
terminate at local minimizer. We also define what is known as an attraction basin. An
attraction basin is composed of all points such that a deterministic local search trajectory
starting from them terminates at a specific local minimizer. Deterministic search
trajectories often suffer from being biased towards attraction basins and as such can yield
a result that is not a global minimizer. To solve this, a given search point is kept close
to a local minimizer that was found in the beginning of the search trajectory. After this,
the search trajectory can search for better attraction basins with respect to reducing the
cost function. As always, there are limitations that we must be conscious of. With tabu
search, the difficulties that are most frequently encountered are the determination of
an appropriate prohibition parameter and making the technique robust enough that it
doesn’t require tedious amounts of tuning from one context to another. This brings us to
reactive tabu search, which has been proposed as a method of solving these problems.

Reactive Tabu Search (RTS)
Reactive tabu search (RTS) features a prohibition parameter that is determined through
reactive mechanisms within the search trajectory. We initialize it with a value of 1 in the
very beginning, but we add a deterministic aspect to how it changes. If there is evidence
that diversification in the search trajectory is needed, T increases. Once this evidence
isn’t apparent, T decreases. Sufficient evidence for diversification in the search path is
reached when we repetitively visit previous points along the search trajectory, as they are
stored in the “memory” of the algorithm. Also, to avoid instances in which the algorithm
is very rigidly stuck in an attraction basin, RTS has an escape mechanism. This is initiated
when too many search trajectory configurations have been repeated in a given period and
features a stochastic reconfiguration of the current search path.

The objective function, f, ultimately is where the information for the direction of the
search trajectory comes from. As such, the following algorithms directly fall under this
paradigm.

Chapter 8 ■ Experimental Design and Heuristics

165

WalkSAT Algorithm
The WalkSAT algorithm can be understood as a more generalized version of the GSAT
algorithm, which is a type of local search algorithm. In the algorithm, there are a set
number of opportunities allowed for a given number of iterations to find a solution.
During a given iteration, the algorithm chooses a variable between two criteria. After this
point, the variable is put into the FLIP function where FLIP xi() = -()1 xi . The WalkSAT

gets its power from doing less calculation than GSAT because it is considering fewer
parameters at a given time. In addition to this, by a product of the clauses which
determine variable picking, it thereby has the opportunity to solve a problem variable
that could be preventing convergence upon the global optimum. Clause-weighting can
also be incorporated into the WalkSAT algorithm, which gives new possibilities for
parameter tuning and feedback loops produced upon, The following algorithm suggests
weights as a method of encouraging more priority on solving the more difficult clauses.
Difficult clauses are considered such after several configurations.

K-Nearest Neighbors (KNN)
KNN is considered to be instance-based learning, which features approximations of the
function locally and all calculations happening after classification. It can also be used for
regression, but often is described as a search method. Its main draws are the fact that it
is relatively easy-to-understand and effective for cases in which there are irregularities in
the pattern of data. These models, in the case of classification, are considered memory-
based where we define k neighboring points that we want to consider. We use a Euclidean
norm on the standardized data to determine the distance between a given point and its k
neighbors. This equation is given as

d x y x y
i

N

i,() = -()
=
å

1

2

where I = 1,2,…,N, N = the total number of observations, x
i
 = ith observation, and y = the

specific point we want to classify.
As K increases, typically we notice that the definition between classes becomes less

rigid, leading to generally more robust models. Insofar as it relates to feature selection,
KNN can be used as a data preprocessing technique often used alongside other search
techniques for more refined feature selection. An example is given from a 2007 paper by
Tahir, Bouridane, and Kurugollu in which they create a hybrid algorithm using a variant
of tabu search and KNNs. The algorithm performs feature weighting and selection,
yielding more accurate classification results. The pipeline occurs such that the features
are selected and weighted via tabu search and classified via KNN. If we don’t perform
feature selection with tabu search, or feature selection at all, more noise is incorporated
into the decision-making process for the KNN algorithm. As the case generally is,
performing feature selection here helps the algorithm make more precise choices when
classifying each observation.

Chapter 8 ■ Experimental Design and Heuristics

166

Summary
This chapter was a kind of meta-heuristic on the entirety of the granular details discussed
up until this point. Foremost, experimental design, feature selection, and A/B testing
will be crucial to any data scientist’s profession. The ability to properly structure the
experiments by which you conduct models, improve upon their performance by
modifying the inputs, and then quantitatively validate the results of a model are crucial.
Chapter 9 discussed hardware solutions for those who are interested in creating a build
for personal or professional use.

http://dx.doi.org/10.1007/978-1-4842-2734-3_9

167© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_9

CHAPTER 9

Hardware and Software
Suggestions

To apply the techniques explored in this book in a professional setting, hardware
upgrades may become a consideration. In some cases, it might even be necessary to build
a computer from the ground up. There are very few out-of-the-box ready builds, and the
ones that do exist can cost a staggering amount of money. With that in mind, this chapter
is intended to give readers a basic overview of the hardware components they should be
most mindful of as well as provide general suggestions on hardware to purchase.

Processing Data with Standard Hardware
You may face many difficulties when operating on a relatively “vanilla” machine. When
working on machine learning and deep learning problems with a large data set, it is
generally recommended that you run most of your operations on subsets of the data and
train in such a manner that the iterations times the size of the subset equals the size of the
original data set. Although this merely provides an approximation of performance, it may
be able to run your solution without crashing the interpreter due to lack of RAM.

It is also highly suggested that individuals with sufficient funds use Amazon Web
Services (AWS). Professionally, Amazon is the go-to solution for cloud services and may
even allow you to pick up a valuable skill set that many employers are eager to have. In
short, you can pay to run instances of all the hardware you need in a cloud environment.
Although for deployment purposes doing so can be extremely costly, for proof of
concept or research using a cloud service like Amazon AWS can be a cost-efficient and
easy solution to solving your problems for deep learning. If you need to implementing
solutions as part of deploying an algorithm for a business or service, however, read
on—the advice given in this chapter is a good starting point.

Solid State Drives and Hard Drive Disks (HDD)
A hard drive disk (HDD) is a storage device used to retain information even while the
machine is not online. The main characteristics of an HDD are the amount of data it
can store and the performance it provides. Since the mid 2000s, as I mentioned early

Chapter 9 ■ Hardware and Software Suggestions

168

in the book, the price of storage has dropped substantially, promoting a resurgence in
interest in the science of machine learning and deep learning. This development makes it
possible to store and collect substantial amounts of training data and/or trained models
that you can update later moments or use for related tasks. Users should become familiar
with the cases they want to tackle most often.

Graphics Processing Unit (GPU)
GPUs are one of the most frequently referenced pieces of hardware with respect
to distinguishing machines that can deliver high-performance deep learning from
machines that aren’t specialized for deep learning). For deep learning, GPUs accelerate
the processing of computations and are an integral part of the deep learning build.
When compared with Central Processing Unit (CPU) computations, GPUs easily
outperform CPUs and are where the bulk of computation occurs. You can build a unit
with multiple GPUs, but be aware of the challenge of efficiently utilizing computing
power when you do this. If you’re not familiar with parallel computing, achieving such
a build can be time-consuming to learn and implement correctly and invites spending
an unknown amount of time, not to mention the time involved in designing and
debugging software before algorithms/solutions can be effectively deployed.

There are packages in different languages to parallelize your code and improve
performance. In R, I suggest you consider the parallel package, especially for performing
the same task on a large amount of data. Rather than inputting the whole data set into
an algorithm, it can be broken up such that the same task is performed in parallel with
chunks of the data set, thereby making it more efficient. Where applicable, you should
also implement the lapply function. This function takes a parameter and feeds it into a
function, making performing complex operations much more computationally efficient
than using nested loops.

My recommendations for GPUs (as of early 2017) focus on the following Nvidia models:

•	 Titan X

•	 GTX 680

•	 GTX 980

As of early 2017, Nvidia is one of the few companies devoting attention to developing
GPUs specifically for the purpose of deep learning. (Note that AMD is partnering with
Google to create deep learning hardware to be released sometime in 2017.) While this
is likely not to be cost-effective for the average practitioner, for those in a professional
context or with sufficient budgets, I suggest you review the specifications and
performance reviews for AMD’s FirePro S9300 x2 GPU when it releases.

Choosing a GPU depends on the type of problem you want to solve and how
much memory you expect to consume in the process. Those using CNNs should expect
to consume a great deal of memory, particularly in the process of training a given
model. The physical storage for images and other data with deep learning is another
consideration to keep in mind. Though both solid storage and virtual storage have
dropped in price dramatically, you should set aside time to properly estimate the storage
necessary.

Chapter 9 ■ Hardware and Software Suggestions

169

Central Processing Unit (CPU)
The CPU instructs the computer on what operations should happen and where these
operations should happen, in addition to performing very basic arithmetic, logical, and
input/output functions. The CPU also works closely with the GPU to initiate function
calls and initiate transfers of computations to the GPU. For deep learning–specific work,
the number of CPU cores as well as CPU cache size are important. Most deep learning
libraries rely on using a single CPU thread, and you can often perform just fine with
one thread per GPU. However, using more threads per GPU will likely lead to better
performance—take this fact in context with the task you intend to perform. For image-
classification tasks, such the classic MNIST digit-classification task, I have found that
using g2.2xlarge instances from AWS is more than sufficient, if I have difficulty using my
local machine—it provides 1 GPU with 15 GB of RAM and 60 GB of SSD storage.

With respect to CPU cache size, there are several cache types with varying speeds.
L1 and L2 tend to be quick, and L3 and L4 are slow. The purpose of the CPU cache is to
help speed up computation via matching a key pair value. Most data sets encountered in
a practical context are too large to fit into a CPU cache, so new data will be read in from
the RAM on a given computer for each mini-batch. In the case of deep learning, most of
the computation takes place in the GPU, so you needn’t worry about buying CPUs that
can handle this load. However, due to CPU cache misses, you may often see that the
machine underperforms and you have latency issues. That leads to the core consideration
with cache misses: RAM and the need for more of it so often in machine learning and
deep learning.

Random Access Memory (RAM)
RAM stores frequently used program instructions such that the speed of programs
increases because it stores data that will be read or written irrespective of its location
within the RAM. As for the size of RAM you need, it should be comparable to the size
of the GPU you’re using. Using less RAM than the size of the GPU is likely to lead to
latency issues that can cause problems particularly when training different networks
such as CNNs. Using more RAM rather than less allows you to perform preprocessing
and feature engineering much more easily than otherwise. It’s easy to say, “Buy as much
RAM as possible,” but of course that’s not always possible. However, you should consider
investing a significant portion of available capital in this aspect.

Motherboard
The motherboard is the main circuit board, found in a variety of products besides
personal computers. Its primary purpose is to facilitate communication between various
components within a computer, and it holds the connectors between these components.
Make sure the motherboard has enough PCIe ports to support the number of GPUs
that will be installed in a given computer, as well as support all the other hardware
components being chosen.

Chapter 9 ■ Hardware and Software Suggestions

170

Power Supply Unit (PSU)
Power supply units convert alternating current electricity to regulated direct current
power so that it can be used by the components within the computer. With regard to
PSUs used for deep learning, be mindful to buy one that can service the number of GPUs
you use if you use more than one. Deep learning can often require intensive periods of
training, and the costs of running these instances should be minimized. The required
watts for a given deep learning machine can be approximated by summing the watts of
the GPU and CPUs while adding roughly 200 watts for the other components within the
computer and variances in power consumption.

Optimizing Machine Learning Software
The major purpose of this chapter is to allow the reader to find where to focus their
attention with respect to improving their machine. The end goal is to improve the
performance of the software being tested and deployed, but part of that involves
optimizing the software directly. To that end, before all other steps, I advise you to try
to improve the algorithm you’re using or find a better one when implementing a given
solution. Optimal choice of algorithm and finding the most optimal implementation
of said algorithm can be quite time-consuming. It might involve reading through a
considerable amount of documentation, looking through the code for various functions
in depth, and possibly doing experimentation. Although this book is intended for those
who are relatively experienced in R and who are new to deep learning/machine learning,
after reading through this text you should feel confident enough to begin creating your
own implementations of various machine learning algorithms. Although time-intensive,
doing so can teach you a great deal about the efficiency of different algorithms and their
implementations.

A common debate currently revolves around which language to use. R is a very
accessible language and great for proof of concept, particularly because its syntax allows
for code to be written and tested quickly. Yet it can often prove cumbersome when
trying to deploy the algorithms for anything that requires real-time applications—and
particularly when trying to embed the software into other applications. If you intend on
working in a professional context, keep that in mind when devising final solutions for
anything. Typically, those looking to write for speed often do so in C++. This book doesn’t
cover C++, of course, or any of the packages in C++ for that matter, but readers should
explore the myriad of libraries available in C++ for machine learning and deep learning.

Summary
This chapter should give readers a basic understanding of some of the most common
concerns they should have when making a dedicated build for machine learning—or
when trying to modify their existing hardware to better service their deep learning needs.

Chapter 10 dives into practical examples more heavily using machine learning and
deep learning solutions.

http://dx.doi.org/10.1007/978-1-4842-2734-3_10

171© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_10

CHAPTER 10

Machine Learning Example
Problems

In this chapter we’ll start applying the techniques discussed so far to practical
problems you may potentially face. The data sets provided will either be generated
from random data or will be from https://github.com/TawehBeysolowII/
AnIntroductionToDeepLearning. Note that you can also consult that URL for all code and
data sets provided in the examples given in prior chapters.

In this chapter we will be exclusively examining machine learning problems. Though
I can’t cover every possible field and problem type, the focus on the examples here will to
be address common scenarios users are likely to encounter.

I encourage you to view these final example chapters as tutorials for how to go from a
data set (raw or processed) to a solution. Although these examples are feasible solutions,
the most important aspect is applying the experimental design, feature selection, and
model evaluation methodologies we’ve already discussed to solve problems effectively.

Problem 1: Asset Price Prediction
Quantitative finance is a field that continues to incorporate data science and machine
learning techniques into its methods, specifically in the process of automated trading and
market research. Although quantitative finance in and of itself is a field with a rich diversity
and its own techniques, there are many broad analytic and mathematical concepts we can
apply. For this example, we will be using the quantmod package to download financial data,
and I’ll walk you through how to predict asset prices. I’ll also briefly explain how to create
a trading strategy—specifically, a statistical arbitrage strategy. As always, backtesting these
results is highly recommended prior to anyone applying these techniques. The purpose
of this chapter is to provide an academic understanding of machine learning—it’s not
intended as a tutorial in quantitative portfolio management!

Let’s assume you’re a quantitative analyst at an asset management firm and you’re
tasked with reasonably predicting the returns of an asset that is in the S&P 500. Your
managing director believes that there are ten other stocks that would be helpful in

https://github.com/TawehBeysolowII/AnIntroductionToDeepLearning
https://github.com/TawehBeysolowII/AnIntroductionToDeepLearning

Chapter 10 ■ Machine Learning Example Problems

172

modeling the performance of this particular asset and that you should likely somehow
use these in your analysis. The director gives no prescriptions particularly on what to use,
besides suggesting using a machine learning approach to solving this problem.

Let’s begin by defining the problem.

Problem Type: Supervised Learning—Regression
Any problem in which we’re trying to predict discrete or continuous values is known as
a regression problem. Because we have the answers, and we’re trying to compare our
proposed answers against the actual answers, this is a supervised learning problem.
Specifically, we’ll be trying to predict the returns of one asset, y, based on the returns of
other assets, x. Let’s start building the pipeline to solve this problem.

Typically, using the Yahoo! or Google Finance API is recommended for these tasks.
For those particularly focused on the application of machine learning to quantitative
finance, note that Yahoo! Finance’s data has survivorship bias built in—that is, any
companies that are now defunct cannot have their data accessed anymore. So, companies
that were delisted for any reason are no longer stored in the database. This creates a
problem because all strategies using this data won’t reflect the worst possible downside
had someone, for example, traded securities such as Bear Sterns of Lehman Brothers
during the financial crisis. However, databases that hold data of companies that went
bankrupt or are no longer listed can be found (Norgate Data is one example).

We’ll begin by loading data using the Google Finance API, but will do so using the
quantmod package. This package is recommended for any work requiring access to stock
data, such as getting daily, monthly, or quarterly prices for various financial instruments,
in addition to getting data on financial statements from publically listed companies.

Let’s start walking through the code:

#Clear the workspace (1)
rm(list = ls())

#Upload the necessary packages (2)
require(quantmod)
require(MASS)
require(LiblineaR)
require(rpart)
require(mlbench)
require(caret)
require(lmridge)
require(e1071)
require(Metrics)
require(h2o)
require(class)
#Please access github to see the rest of the required packages!

Chapter 10 ■ Machine Learning Example Problems

173

#Summary Statistics Function
#We will use this later to evaluate our model performance (3)
summaryStatistics <- function(array){
 Mean <- mean(array)
 Std <- sd(array)
 Min <- min(array)
 Max <- max(array)
 Range <- Max - Min
 �output <- data.frame("Mean" = Mean, "Std Dev" = Std, "Min" = Min,
"Max" = Max, "Range" = Range)

 return(output)
}

In the preceding code, as always when using R, it’s important to clear the workspace
(1) when working with a new experiment. Then we load the required packages (2). The
next function defined gives summary statistics on the arrays that we’re analyzing (3). In
this example, we’ll be looking exclusively at MSE. This is to provide a simple example of
how to evaluate machine learning models.

There are two approaches I often take:

•	 Evaluate several models in default mode and then perform
parameter tuning on the best model.

•	 Perform parameter tuning one parameter at a time and then
evaluate the tuned models against one another.

Here, I’ll be performing the latter, though to a less intensive degree for the purpose of
simplicity and explanation.

Description of the Experiment
The general pipeline we will create to solve this problem can be described as follows:

Data Ingestion → Feature Selection → Model Training and Evaluation → Model
Selection

Specifically, in this problem we will try to predict the returns of Ford, ticker F, based
on the returns of stocks we suspect accurately describe these returns (a mix of market
indices and other stocks). The selection of our stock portfolio could be a study in and
of itself, but in this instance we chose stocks that are related to the auto market (macro
indicators and those tied to the energy industry). The assumption here is that stocks
that track the performance of Ford are likely to be companies within the same industry,
in related industries that service the auto market in some way, or describe greater
implications about the economy at large.

Be aware that beyond the mathematics necessary to properly understand how to
create machine learning models, it’s necessary to provide these models with useful data.
If we were to use features that are completely irrelevant to the problem being solved, we
would be very unlikely to receive any useful results as output from a fitted model. As such,

Chapter 10 ■ Machine Learning Example Problems

174

these assumptions we made to create our data set will help yield the better results prior to
any fine tuning we perform on our algorithms:

#Loading Data From Yahoo Finance (4)
stocks <- c("F", "SPY", "DJIA", "HAL", "MSFT", "SWN", "SJM", "SLG", "STJ")
stockData <- list()
for(i in stocks){
 stockData[[i]] <- getSymbols(i, src = 'google', auto.assign = FALSE, from
= "2013-01-01", to = "2017-01-01")
}

#Creating Matrix of close prices
df <- matrix(nrow = nrow(stockData[[1]]), ncol = length(stockData))
for (i in 1:length(stockData)){
 df[,i] <- stockData[[i]][,4]
}
#Calculating Returns
return_df <- matrix(nrow = nrow(df), ncol = ncol(df))
for (j in 1:ncol(return_df)){
 for(i in 1:nrow(return_df) - 1){
 return_df[i,j] <- (df[i+1, j]/df[i,j]) - 1
 }
}

In the preceding code, we pull the data from Yahoo! Finance (4). Unless this data is
saved after initial download, you should have an active Internet connection—otherwise
this part of the code won’t execute properly. When calculating the returns of a given
stock, you can think of returns as a derivative, but a simpler formula for a return based
price is the following:

Adjusted CloseR
P

Px
x

x
t

t

t

=








−

+1 1

(A)

Where x = stock x, y = stock y, t = time period (1,2, … n),

n = number of observations, and Pxt
 = Price of Stock x in period t

For the purpose of this experiment, and likewise in many such cases in quantitative
finance, we calculate returns based on adjusted close prices (equation A). We call these
adjusted close prices based on their reflecting any changes in the underlying stock price
over time due to dividends, stock splits, or other financial adjustments that have nothing
to do with the performance of the stock or market conditions. Here, we will be looking at
daily returns. The selection of the time frequency is entirely up to the user and depends
on the strategy being assessed. Generally speaking, high-frequency trading occurs
multiple times within a day, and low-frequency trading occurs in increments significantly
longer than a day.

We organize the data such that each column represents the returns of a given stock and
each row represents the return on a given day. Figure 10-1 shows the head of the data set.

Chapter 10 ■ Machine Learning Example Problems

175

Stock returns often work well with machine learning algorithms because they are all
scaled similarly and represent a measure that is relative to all the observations within a
given stock, as well as the universe of stocks available for analysis.

Feature Selection
When handling time series data, we often encounter multicollinearity. Because of this,
PCA is a fair method to use for feature selection. We do so because there are likely
features that are unnecessary to evaluate, and therefore noise need not be valuated,
in addition to the fact that linear correlations among variables are high. So, evaluating
features by their variance contributed is reasonable. The following shows the code that
performs PCA:

#Feature Selection
#Removing last row since it is an NA VALUE
return_df <- return_df[-nrow(return_df),]
#Making DataFrame with all values except label IE all columns except for
Ford since we are trying to predict this
#Determing Which Variables Are Unnecessary
pca_df <- return_df[, -1]
pca <- prcomp(scale(pca_df))
cor(return_df[, -1])
summary(pca)

When executing the preceding code, we receive the results shown in Figures 10-2
and 10-3.

Figure 10-1.  Head of stock return data set

Figure 10-2.  Correlation matrix for entire data set

Chapter 10 ■ Machine Learning Example Problems

176

In row 2 of Figure 10-3, you can see the proportion of the variance each principal
component contributes to the data set. It must be stated for clarity that principal
components do not represent the features within the data set. With that being said, we
can consider principal component 1 to be a combination of features 1 through 8, PC 2
to be a combination of features 2 through 8, and so on. The general rule of thumb is to
consider as insignificant principal components that contribute 1% or less to the total
variance. When translating this to the data set, we would remove feature 8 within the
data set. This same pattern of analysis should be extrapolated, but only when linear
correlations between features are observed. Back in Figure 10-1, you can see generally
moderate to strong linear correlations among the features, indicating that PCA is indeed
an appropriate choice for features.

Model Evaluation
Now that we’ve preprocessed the data, let’s consider our choices for algorithms. In this
example, we’ll evaluate a couple of different choices and evaluate the MSE on all of them.
The number of models to choose is entirely up to you, but for this practical example
I’ll choose two. Furthermore, should you choose to evaluate statistics other than MSE,
such as R Squared, it is reasonable to evaluate these measures relative to the goal of
the experiment. That said, MSE should be and is the primary objective to minimize in
regression models, and that should be the primary concern above all other evaluation
methods.

Ridge Regression
Let’s choose the first model: ridge regression. Here, we’ll evaluate the MSE with respect to
the value of the tuning parameter. In the following code, we begin by randomly sampling
values from a normal distribution (5). These values will be used to pick the size of the
tuning parameter, which we represent with K. The intuition behind this is that we’ll
sort the values from lowest to greatest and then compare the performance of our ridge
regression model’s MSEs by visualizing the error as we increase the tuning parameter:

#Ridge Regression
k <- sort(rnorm(100))(5)

Figure 10-3.  Summary of principal components analysis (PCA) on data set

Chapter 10 ■ Machine Learning Example Problems

177

In the following code, we begin by cross validating our results so that we are
evaluating generalities of model performance rather than testing our algorithm on the
exact same data set (6). We choose to use a training and test set of equal size, by splitting
the data in half:

mse_ridge <- c()
for (j in 1:length(k)){ (6)
 valid_rows <- sample(1:(nrow(return_df)/2))
 valid_set <- new_returns[valid_rows, -1]
 valid_y <- new_returns[valid_rows, 1]
#Ridge Regression (7)
 �ridgeReg <- lmridge(valid_y ~ valid_set[,1] + valid_set[,2] +

valid_set[,3] + valid_set[,4]
 + valid_set[,5] + valid_set[,6], data =
as.data.frame(valid_set), type = type, K = k[j])
 mse_ridge <- append(rstats1.lmridge(ridgeReg)$mse, mse_ridge)
}

We then move to fitting the data to the ridge regression model using the lmridge()
function and then append the MSE to a vector entitled mse_ridge (7).

When executing the following code, we see the result shown in Figure 10-4:

#Plots of MSE and R2 as Tuning Parameter Grows
plot(k, mse_ridge, main = "MSE over Tuning Parameter Size", xlab = "K",
ylab = "MSE", type = "l",
 col = "cadetblue")

When looking at the plot, we see that the model performs best when our tuning
parameter K is closest to the upper and lower bounds of the range displayed. Specifically,
we’ll choose to create a fitted model with a tuning parameter value of 1, as this K value
yields a low MSE. When evaluating models it’s important—in interviews, experiments,
and for personal evaluation—to use plots to see the performance of the model with

Figure 10-4.  MSE over tuning parameter size

Chapter 10 ■ Machine Learning Example Problems

178

respect to some parameter value changing. This is useful for you as well as for other
people who are using/evaluating your code. It will help to guide people through your
thought process, and plots tend to be more engaging than looking at numerical outputs of
code from a terminal.

Before we test our fitted model on data outside our validation set, let’s show how we
would tune another algorithm: the support vector regression (SVR).

Support Vector Regression (SVR)
The main parameter to tune here is the kernel function, which determines the shape
of the hyperplane and therefore the shape of the regression line. When we execute the
following code, we get the plot shown in Figure 10-5:

#Kernel Selection
svr_mse <- c()
k <- c("linear", "polynomial", "sigmoid")
for (i in 1:length(k)){
 valid_rows <- sample(1:(nrow(return_df)/2))
 valid_set <- new_returns[valid_rows, -1]
 valid_y <- new_returns[valid_rows, 1]

 �SVR <- svm(valid_y ~ valid_set[,1] + valid_set[,2] + valid_set[,3] +
valid_set[,4]

 + valid_set[,5] + valid_set[,6], kernel = k[i])
 svr_y <- predict(SVR, data = valid_set)
 svr_mse <- append(mse(valid_y, svr_y), svr_mse)
}

#Plots of MSE and R2 as Tuning Parameter Grows
plot(svr_mse, main = "MSE over Tuning Parameter Size", xlab = "K",
ylab = "MSE", type = "l",
 col = "cadetblue")

Figure 10-5.  SVR MSE with respect to kernel selection

Chapter 10 ■ Machine Learning Example Problems

179

When evaluating the output, we notice that following MSE values in Figure 10-5. The
polynomial kernel yields the smallest MSE and therefore is our choice. Now, that we’ve
trained both models, we’ll predict out of sample using our tuned models. In a practical
setting, you should likely fit more than two models and evaluate the performance.
Because this process is exhaustive, I’ve condensed this example to comparing two models
for the sake of explanation. Regardless, let’s see the performance of our tuned models:

#Predicting out of Sample with Tuned Models
#Tuned Ridge Regression
ridgeReg <- lmridge(valid_y ~ valid_set[,1] + valid_set[,2] + valid_set[,3]
+ valid_set[,4]
 + valid_set[,5] + valid_set[,6], data = as.data.
frame(valid_set), type = type, K = 1)

y_h <- predict(ridgeReg, as.data.frame(new_returns[-valid_rows, -1]))
mse_ridge <- mse(new_returns[-valid_rows, 1], y_h)

#Tuned Support Vector Regression
svr <- SVR <- svm(valid_y ~ valid_set[,1] + valid_set[,2] + valid_set[,3]
+ valid_set[,4]
 + valid_set[,5] + valid_set[,6], kernel = "polynomial")
svr_y <- predict(svr, data = new_returns[-valid_rows, -1])
svr_mse <- mse(new_returns[-valid_rows, 1], svr_y)

#Tail of Predicted Value DataFrames
svr_pred <- cbind(new_returns[-valid_rows, 1], svr_y)
colnames(svr_pred) <- c("Actual", "Predicted")
tail(svr_pred)
ridge_pred <- cbind(new_returns[-valid_rows, 1], y_h)
colnames(ridge_pred) <- c("Actual", "Predicted")
tail(ridge_pred)

The preceding code uses the regression models we trained, except we set the
parameter values based on which values yielded the lowest MSE. Although we fit the
model to the training data, we’re predicting on the test data. This is denoted by the fact
that we’re indexing from the return data frame using all the observations that we did not
train the model against. When predicting on the test data set, the Figures 10-6 and 10-7
show the actual versus predicted stock values for each algorithm.

Chapter 10 ■ Machine Learning Example Problems

180

When evaluating the MSE of these algorithms, we receive the following results:

MSE for Support Vector Regression: 0.0002967161

MSE for Ridge Regression: 0.0002632815

Based on these results, it’s reasonable to say that we should choose the ridge
regression over the SVR based on the better MSE. You should feel free to work through
the example given and use different feature selection algorithms, in addition to different
algorithms altogether, when evaluating a solution. The purpose of this section, again, is
to provide insight into how I generally approach these problems so that you may begin to
develop your own methodology. Although there are general guidelines to model selection
and tuning, everyone is free to perform this in their own way.

Let’s now view a classification problem.

Problem 2: Speed Dating
In speed dating, participants meet many people, each for a few minutes, and then
decide who they would like to see again. The data set we will be working with contains
information on speed dating experiments conducted on graduate and professional
students. Each person in the experiment met with 10–20 randomly selected people of the
opposite sex (there were only heterosexual pairings) for four minutes each. After each
speed date, each participant filled out a questionnaire about the other person. Our goal
is to build a model to predict which pairs of daters want to meet each other again (that is,
have a second date).

Figure 10-7.  Tail of actual versus predicted data frame (ridge regression)

Figure 10-6.  Tail of actual versus predicted data frame (SVR)

Chapter 10 ■ Machine Learning Example Problems

181

Problem Type: Classification
Any problem in which we’re trying to determine binary or finite multinomial outcomes
can be thought of as a classification problem. In this case, this will be a supervised
problem, because we know the labels of the data beforehand, but we need to calculate
them via a deterministic rule specific to this data set. A second date is only planned if
both people in a given matching decide they would like to see the other person again. So,
we’ll create this column in the preprocessing stage of the data set:

#Upload Necessary Packages
require(ggplot2)
require(lattice)
require(nnet)
require(pROC)
require(ROCR)

#Clear the workspace
rm(list = ls())

#Upload the necessary data
data <- read.csv("/Users/tawehbeysolow/Desktop/projectportfolio/
SpeedDating.csv", header = TRUE, stringsAsFactors = TRUE)

#Creating response label
second_date <- matrix(nrow = nrow(data), ncol = 1)

for (i in 1:nrow(data)){
 if (data[i,1] + data[i,2] == 2){
 second_date[i] <- 1
 } else {
 second_date[i] <- 0
 }
}

As always, we begin the experiment by loading the necessary packages and clearing
the workspace. Then we load the data and create a response label denoted second_date.

Now that we’ve gone through some initial preprocessing, let’s describe and explore
our data set. The features in this data set are as follows, from the first column through the
last column:

•	 Second_Date: The response variable, y, for the data set which is
binary. 1 = Yes (you would like to see the date again), 0 = No
(you would not like to see the date again).

•	 Decision: The decision of the individual person, segregated by
sex, as to whether they would like to go on a second date. 1 = Yes
(you would like to see the date again), 0 = No (you would not like
to see the date again).

Chapter 10 ■ Machine Learning Example Problems

182

•	 Like: Overall, how much do you like this person? (1 = not at all, 10
= like a lot).

•	 PartnerYes: How probable do you think it is that this person will
say ‘yes’ for you? (1 = not probable, 10 = extremely probable).

•	 Age: Age.

•	 Race: Caucasian, Asian, Black, Latino, or Other.

•	 Attractive: Rate attractiveness of partner on a scale of 1–10
(1 = awful, 10 = great).

•	 Sincere: Rate sincerity of partner on a sale of 1–10 (1 = awful,
10 = great).

•	 Fun: Rate how fun partner is on a scale of 1–10 (1 = awful,
10 = great).

•	 Ambitious: Rate ambition of partner on a scale of 1–10 (1 = awful,
10 = great).

•	 Shared Interest: Rate the extent to which you share interests/
hobbies with partner on a scale of 1–10 (1 = awful, 10 = great).

Preprocessing: Data Cleaning and Imputation
Note that in this data set there are NA observations. As mentioned, we have multiple tools
to deal with this problem, but it’s important for us to algorithmically find a way to handle
this. We will tackle that prior to performing any feature transformation. The following
code shows the process by which we handle NA data:

#Cleaning Data
#Finding NA Observations
lappend <- function (List, ...){
 List <- c(List, list(...))
 return(List)
}
na_index <- list()
for (i in 1:ncol(data)){
 na_index <- lappend(na_index, which(is.na(data[,i])))
}

First, we create a function that will let us append vectors to a list such that for each
column, we have a vector of rows that indicate where the NA observations are. Given the
nature of the data set, it’s logical to impute the values using a method most reasonable
given the data within that column/feature. Note that columns Second_Date, DecisionM,
DecisionF, RaceM, and RaceF don’t have any missing data. We’re going to tackle the
features that do have missing data.

Chapter 10 ■ Machine Learning Example Problems

183

We’ll perform our data imputation using the expectation maximization (EM)
algorithm described in Chapter 3. This is given in the amelia package, which can be
installed from the R terminal. Before that, though, we must prepare our data slightly:

#Imputing NA Values where they are missing using EM Algorithm
#Step 1: Label Encoding Factor Variables to prepare for input to EM Algorithm
data$RaceM <- as.numeric(data$RaceM)
data$RaceF <- as.numeric(data$RaceF)

#Step 2: Inputting data to EM Algorithm
data <- amelia(x = data, m = 1, boot.type = "none")$imputations$imp1

#Proof of EM Imputation
na_index <- list()
for (i in 1:ncol(data)){
 na_index <- lappend(na_index, which(is.na(data[,i])))
}
na_index <- matrix(na_index, ncol = length(na_index), nrow = 1)
print(na_index)

 #Scaling Age Features using Gaussian Normalization
data$AgeM <- scale(data$AgeM)
data$AgeF <- scale(data$AgeF)

The EM algorithm can’t handle factors (categorical variables). That means we must
numerically encode these factors prior to their being inputted to the algorithm. After this,
we execute the amelia function, which executes what we would like. Moving forward, we
provide proof that there is no longer any NA data within this data set by indexing any NA
values and then printing this output, yielding the result shown in Figure 10-8.

We’ve successfully removed all the NA observations and will perform the last bit of
preprocessing before we move on to feature selection. Let’s look at the distribution of
ages with respect to both male and female. We code this as the following and receive the
subsequent result:

#Scaling Age Features using Gaussian Normalization
summaryStatistics(data$AgeM)

Mean Std.Dev Min Max Range
1 26.60727 3.509664 18 42 24

Figure 10-8.  Displaying counts of NA values in cleaned data set

http://dx.doi.org/10.1007/978-1-4842-2734-3_3

Chapter 10 ■ Machine Learning Example Problems

184

summaryStatistics(data$AgeF)

Mean Std.Dev Min Max Range
1 26.24317 3.977411 19 55 36

#Making Histograms of Data
hist(data$AgeM, main = "Distribution of Age in Males", xlab = "Age",
ylab = "Frequency", col = "darkorange3")
hist(data$AgeF, main = "Distribution of Age in Females", xlab = "Age",
ylab = "Frequency", col = "firebrick1")
data$AgeM <- scale(data$AgeM)
data$AgeF <- scale(data$AgeF)

When visualizing the distributions of the data using the hist() function, the code
yields the results shown in Figures 10-9 and 10-10.

Figure 10-9.  Histogram of male ages

Figure 10-10.  Histogram of female ages

Chapter 10 ■ Machine Learning Example Problems

185

The distributions of both female and male ages are positively skewed, meaning that
the average is less than the median. However, note that there is significantly less variation
in female ages in contrast to male ages. Although this also might serve as an insight
we want to keep, you should glean the importance of displaying plots when exploring
your data set and explaining what the information shows. This tends to be one of the
most compelling ways to display information for people who aren’t nearly as technical.
For those who often find themselves making presentations, effective use of plots is a
must. Finally, we end our data cleaning and preprocessing by performing Gaussian
normalization on the age variables so that their inputs don’t affect the accuracy of our
classification models, because they are on different ranges than every other variable that
isn’t a numerical label.

Now that all the necessary preprocessing has been performed, we can approach the
task of feature selection.

Feature Selection
This data set doesn’t have an abnormally large number of observations, but 27 individual
features likely makes for overkill and will unnecessarily weaken our machine learning
algorithm’s predictive power. As such, it is reasonable for us to eliminate unnecessary
features, though we should be mindful of this process not necessarily being as
straightforward as it appears.

When looking at the correlation matrix (the matrix is too large to be displayed here),
we notice that there are generally weak to moderate linear correlations. We will likely be
unable to get effective results from any models that rely heavily upon linear assumptions.
When relating that to feature selection, we are similarly unlikely to get good results from
using PCA. So, I chose to use a random forest to denote feature importance based on how
much they affect the classification of an observation:

#Feature Selection
corr <- cor(data)

#Converting all Columns to Numeric prior to Input
for (i in 1:ncol(data)){
 data[,i] <- as.integer(data[,i])
}

#Random Forest Feature Selection Based on Importance of Classification
data$second_date <- as.factor(data$second_date)
featImport <- random.forest.importance(second_date ~., data = data,
importance.type = 1)
columns <- cutoff.k.percent(featImport, 0.4)
print(columns)

Chapter 10 ■ Machine Learning Example Problems

186

When executing the preceding code, the following columns are above the 0.4
threshold set for importance:

[1] "DecisionF" "DecisionM" "AttractiveM" "FunF" "LikeM"
[6] "LikeF" "SharedInterestsF" "AttractiveF" "PartnerYesM"

These will be the features used in our training set, and we now can proceed to model
training and evaluation.

Model Training and Evaluation
Now that we have a sufficiently reduced and transformed data set, it’s time to go about
the process of model selection. Because the function that determines the classification
is not linear, we should look at functions that can handle this type of data. In the next
problem, we’ll use the following portfolio of algorithms:

•	 Logistic regression

•	 Bayesian classifier

•	 K-nearest neighbors

We’ll tune each algorithm’s parameters individually, evaluate the training set
performance, and then predict out of sample. Once we’ve done this for all algorithms,
we’ll evaluate the results side by side and then choose the most optimal algorithm.

Method 1: Logistic Regression
It’s suggested that when evaluating a portfolio classification algorithms you should always
start with logistic regression. The reason is less because of the expectation for this to be
the best algorithm, and more from the standpoint that this forms a baseline evaluation
from which you can compare the different classification algorithms. In this experiment,
we’ll evaluate the performance of our models with respect to their AUC score, which is
the area under the (ROC) curve:

#Method 1: Logistic Regression
lambda <- seq(.01, 1, .01)
AUC <- c()
for (i in 1:length(lambda)){
 rows <- sample(1:nrow(processedData), nrow(processedData)/2)
 �logReg <- glm(as.factor(second_date[rows]) ~., data = processedData[rows,],
family = binomial(link = "logit"), method = "glm.fit")

 y_h <- ifelse(logReg$fitted.values >= lambda[i], 1, 0)
 AUC <- append(roc(y_h, as.numeric(second_date[-rows]))$auc, AUC)
}

Chapter 10 ■ Machine Learning Example Problems

187

We start by altering the threshold that determines whether we classify an observation
as a 1 or 0 based on the lambda parameter. We iterate over the algorithm and append
the AUC score based on this parameter to the AUC vector. After this loop of iterations, we
should evaluate the performance visually by using a plot. When plotting the AUC score
vector over the lambda value, we write the following code and observe the output shown
in Figure 10-11:

#Summary Statistics and Various Plots
plot(lambda[-1], AUC, main = "AUC over Lambda Value \n(Logistic
Regression)",
 xlab = "Lambda", ylab = "AUC", type = "l", col = "cadetblue")

We see that the AUC score is the highest when the lambda value is 0.15, so we’ll use
that lambda value. This is an example of how I would suggest you tune machine learning
algorithms’ parameters. Each parameter should be tuned individually so that you achieve
a given objective, whether that is to minimize MSE or maximize AUC. In the logistic
regression, the log odds threshold is really the only parameter we need to tune. We can
view the performance of the tuned model over several iterations on the test set:

#Tuned Model
AUC <- c()
for (i in 1:length(lambda)){
 rows <- sample(1:nrow(processedData), nrow(processedData)/2)
 �logReg <- glm(as.factor(second_date[rows]) ~., data = processedData[rows,],
family = binomial(link = "logit"), method = "glm.fit")

 y_h <- ifelse(logReg$fitted.values >= lambda[which(AUC == max(AUC))], 1, 0)
 AUC <- append(roc(y_h, as.numeric(second_date[-rows]))$auc, AUC)

}

Figure 10-11.  AUC over lambda value

Chapter 10 ■ Machine Learning Example Problems

188

#Summary Statistics and Various Plots
plot(AUC, main = "AUC over 100 Iterations \n(Naive Bayes Classifier)",
 xlab = "Iterations", ylab = "AUC", type = "l", col = "cadetblue")
hist(AUC, main = "Histogram for AUC \n(Naive Bayes Classifier)",
 xlab = "AUC Value", ylab = "Frequency", col = "firebrick3")

We follow the same intuition as when tuning the machine learning algorithms, by
collecting the AUC. The nature of the logistic regression is such that it fits a model upon each
iteration rather than choosing the most optimal regression solution, as some algorithms
do. When plotting the AUC vector with respect to the iterations over time and plotting a
histogram of the AUC vector, we observe the results shown in Figures 10-12 and 10-13.

Figure 10-12.  Logistic regression AUC over 100 iterations

Figure 10-13.  Logistic regression AUC histogram over 100 iterations

Chapter 10 ■ Machine Learning Example Problems

189

Numerically, we can summarize this vector using the following function:

summaryStatistics(AUC)

Mean Std.Dev Min Max Range
1 0.5063276 0.04964798 0.3920711 0.6297832 0.2377121

We’ll keep these values in mind moving forward. When analyzing them as is, logistic
regression is an insufficient classifier. Typically, we would like to see AUC scores be at
least .70, because a score of .50 indicates that the model is correct only 50% of the time.
Less than .50 is not optimal and arguably means that we should consider this classifier
insufficient.

Method 3: K-Nearest Neighbors (KNN)
This is a fairly simple classification algorithm described in detail in Chapter 3. The
purpose in picking this algorithm relative to another probabilistic algorithm is to create
a diverse algorithm portfolio such that we can infer which types of algorithms are best
suited to this task. As a note to the reader, the K-NN algorithm in the class package yields
the classifications from the test data. To train your algorithm on the training data only,
use the same data that you assign to the “train” argument:

#Method 3: K-Nearest Neighbor
#Tuning K Parameter (Number of Neighbors)
K <- seq(1, 40, 1)
AUC <- c()
for (i in 1:length(K)){
 rows <- sample(1:nrow(processedData), nrow(processedData)/2)
 �y_h <- knn(train = processedData[rows,], test = processedData[rows,],
cl = second_date[rows], k = K[i], use.all = TRUE)

 AUC <- append(roc(y_h, as.numeric(second_date[rows]))$auc, AUC)
}

#Summary Statistics and Various Plots
plot(AUC, main = "AUC over K Value \n(K Nearest Neighbor)", xlab = "K",
ylab = "AUC", type = "l", col = "cadetblue")

When looking at the plot of the AUC over K-value chart, we see the results shown in
Figure 10-14.

http://dx.doi.org/10.1007/978-1-4842-2734-3_3

Chapter 10 ■ Machine Learning Example Problems

190

The AUC score in the training phase is generally impressive for all the values, but it’s
reasonable to choose a lower K value than a large one to prevent overfitting. As such, we
will choose a K of 3. Let’s observe the AUC scores on the test set with our tuned model, as
shown in Figures 10-15 and 10-16.

Figure 10-14.  KNN classifier AUC over 100 iterations

Figure 10-15.  KNN AUC over 100 iterations on test set

Chapter 10 ■ Machine Learning Example Problems

191

Figure 10-16.  KNN AUC over 100 iterations on test set histogram

Numerically, we evaluate the AUC vector as the following:

summaryStatistics(AUC)

Mean Std.Dev Min Max Range
1 0.445006 0.01126862 0.4257075 0.4663915 0.04068396

Finally, we predict out of sample and observe the following results:

#Predicting out of Sample
y_h <- knn(train = processedData[rows,], test = processedData[-rows,],
cl = second_date[-rows])
roc(y_h, as.numeric(second_date[-rows]))$auc

Area under the curve: 0.4638
We see a stark drop-off from the training set to the test set, in addition to the test set

performance being objectively poor.

Method 2: Bayesian Classifier
I suspect that occurrence of a second date can be modeled by Bayesian estimators, so
the first model we’ll begin with is the Bayesian classifier. In the following code, first we
perform two-fold cross-validation on the data set so that we evaluate the performance

Chapter 10 ■ Machine Learning Example Problems

192

on the training set. In this particular model, very little tuning needs to occur, so we’ll just
observe the performance of the model over 100 iterations:

#Method 1: Bayesian Classifier
AUC <- c()
for (i in 1:100){
 rows <- sample(1:nrow(processedData), 92)
 �bayesClass <- naiveBayes(y = as.factor(second_date[rows]),
x = processedData[rows,], data = processedData)

 y_h <- predict(bayesClass, processedData[rows,], type = c("class"))
 AUC <- append(roc(y_h, as.numeric(second_date[rows]))$auc, AUC)
}

#Summary Statistics and Various Plots
plot(AUC, main = "AUC over 100 Iterations \n(Naive Bayes Classifier)",
 xlab = "Iterations", ylab = "AUC", type = "l", col = "cadetblue")

hist(AUC, main = "Histogram for AUC \n(Naive Bayes Classifier)",
 xlab = "AUC Value", ylab = "Frequency", col = "cadetblue")

summaryStatistics(AUC)

When executing the code, we append the AUC score to the vector AUC, as shown in
the preceding code that is looped over for 100 iterations. A line plot and histogram of this
vector is shown in Figures 10-17 and 10-18.

Figure 10-17.  Bayes classifier AUC performance over 100 iterations

Chapter 10 ■ Machine Learning Example Problems

193

Figure 10-18.  Bayes classifier AUC histogram over 100 iterations

We observe that the AUC scores have a slight right skew in their distribution and
that the majority of the AUC scores are distributed within a relatively tight band of one
another. When looking at the raw numerical data, we observe the following:

Mean Std.Dev Min Max Range
1 0.8251087 0.03142345 0.7567568 0.9027778 0.146021

These AUC scores yielded are more than generally acceptable for a model we choose,
though we should still evaluate the performance of the model out of sample to be certain
of how stable this process is:

#Predicting out of Sample
y_h <- predict(bayesClass, processedData[-rows,], type = c("class"))
roc(y_h, as.numeric(second_date[-rows]))$auc

After executing the following code, we observe the following AUC score: area under
the curve: 0.8219. This is acceptable within the distribution of the data yielded from the
training set, with this AUC score trending towards the mean of the data.

When evaluating the solutions chosen, I strongly suggest choosing the Bayesian
classifier given its stability from the training to the test set and superior AUC score above
all other methods. In a practical setting, we would use the predictions out of the sample
data to help influence our decision-making processes. In a professional context, this
might include targeted marketing or recommendations to different users based on their
dating profiles.

Chapter 10 ■ Machine Learning Example Problems

194

Summary
You now have a brief but comprehensive view into how I would recommend applying
the concepts I’ve explained in the previous chapters. You should also note that
although I’ve had success in implementing machine learning algorithms using this
general process/methodology, this isn’t the only way of training/tuning machine
learning models. Nevertheless, I strongly emphasize the use of metrics and plotting
the performance of the models with respect to these metrics when tuning different
parameters. Chapter 11 will look at use examples of how to implement and use various
deep learning models.

http://dx.doi.org/10.1007/978-1-4842-2734-3_11

195© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_11

CHAPTER 11

Deep Learning and Other
Example Problems

Now that I’ve sufficiently covered how to use and apply machine learning concepts, we
should finally dive into applying and coding deep learning models using R. This can seem
like a daunting task, but don’t be intimidated. If you have been able to code everything
successfully in this book, it’s just a matter of adjusting to new packages. We will discuss a
variety of deep learning examples, but will begin by dealing with simpler models and then
eventually going on to more complex models. The purpose of these exercises is twofold:

•	 To show how to construct these models or access them from
various packages

•	 To give examples of how they could be used in a practical concept

Autoencoders
Many of the other models described in the deep learning chapters of the book are
relatively straightforward when it comes to how to use them, but I have found that the
use of autoencoders does not become automatically clear. Therefore, I want to explore
a use case in which the use of autoencoders is made abundantly clear in a practical
context. Let’s consider a case in which we would like to use an autoencoder to improve
the performance of a classification algorithm from Chapter 10. Specifically, I mean the
classification problem we walked through, in which we were trying to determine whether
a pair of individuals will go on a second date or not based on several features. Let’s begin
by working with the Bayesian classifier:

#Bayes Classifier
#Bayes Classifier
AUC <- c()
for (i in 1:100){
 rows <- sample(1:nrow(processedData), 92)
 bayesClass <- naiveBayes(y = as.factor(second_date[rows]),
x = processedData[rows,], data = processedData)

http://dx.doi.org/10.1007/978-1-4842-2734-3_10

Chapter 11 ■ Deep Learning and Other Example Problems

196

 y_h <- predict(bayesClass, processedData[rows,], type = c("class"))
 AUC <- append(roc(y_h, as.numeric(second_date[rows]))$auc, AUC)
}

summaryStatistics(AUC)
curve <- roc(y_h, as.numeric(second_date[rows]))
plot(curve, main = "Bayesian Classifier ROC")

When executing the preceding code, it yields what is shown in Figure 11-1.

Figure 11-1.  ROC plot for Bayesian classifier

We observe AUC scores of this model when collecting sample statistics:

Mean Std.Dev Min Max Range
0.8210827 0.02375922 0.7571429 0.875 0.1178571

These are objectively good scores. However, for the purpose of this example, we’re
going to use an autoencoder to help improve the performance of this model even further.
This is where I introduce h2o. h2o produces a deep learning framework for R (along with
other languages) that you will find useful for implementing many models. I encourage
you to search through the documentation, because some implementations of deep
learning models are hard to find (not to mention finding robust implementations).
So let’s initialize h2o and use an autoencoder:

#Autoencoder
h2o.init()
training_data <- as.h2o(processedData, destination_frame = "train_data")

Chapter 11 ■ Deep Learning and Other Example Problems

197

autoencoder <- h2o.deeplearning(x = colnames(processedData),
 training_frame = training_data, autoencoder = TRUE, activation = "Tanh",
 hidden = c(6,5,6), epochs = 10)
autoencoder

h2o is similar to TensorFlow in that each session must be initialized. After this is
initialized, whatever data passes through the models used must be transformed into
an h2o-friendly format. We perform that transformation on our training data. Our
autoencoder has three hidden layers, each of which has six, five, and six respective
neurons within the given layers (denoted by the “hidden” argument within the
h2o.deeplearning() function. We use tanh as our activation function. Upon executing
the following code, we see what is shown in Figure 11-2.

Figure 11-2.  Summary of autoencoder function

Note the MSE values. Because we’re trying to recreate inputs of a function, this
becomes a regression task. So we evaluate the effectiveness of this algorithm using the
traditional regression statistics (MSE and RSME). Let’s take a close look at the MSE
yielded here and view the MSE with respect to the index of the data frame that holds the
training data:

#Reconstruct Original Data Set
syntheticData <- h2o.anomaly(autoencoder, training_data, per_feature = FALSE)
errorRate <- as.data.frame(syntheticData)

#Plotting Error Rate of Feature Reconstruction
plot(sort(errorRate$Reconstruction.MSE), main = "Reconstruction Error Rate")

The h2o.anomaly() function uses the autoencoder to detect anomalies, which
statistically we define as observations whose MSE during the reconstruction process are
significantly higher than others. When executing the preceding code, we yield Figure 11-3.

Chapter 11 ■ Deep Learning and Other Example Problems

198

We can see that there is a steady increase of the MSE but also a sharp increase
from the index level 225 through the end of the training data. We can reasonably state
that the outliers are generally these last inputs. With this in mind, we’ll use a threshold
determined by the MSE when segregating outliers from non-outliers into their respective
subsets. We seek to train our Bayesian classifier by fitting our model to these subsets and
seeing how the performance of the model, with respect to the AUC score, improves
(or doesn’t):

#Removing Anomolies from Data
train_data <- processedData[errorRate$Reconstruction.MSE < 0.01,]

#Bayes Classifier
AUC <- c()
for (i in 1:100){
 rows <- sample(1:nrow(processedData), 92)
 �bayesClass1 <- naiveBayes(y = as.factor(second_date[rows]), x =
processedData[rows,], data = processedData)

 y_h <- predict(bayesClass1, processedData[rows,], type = c("class"))
 AUC <- append(roc(y_h, as.numeric(second_date[rows]))$auc, AUC)
}

#Summary Statistics
summaryStatistics(AUC)

Figure 11-3.  Plot of reconstruction error

Chapter 11 ■ Deep Learning and Other Example Problems

199

We follow the same general steps we followed in Chapter 10 with respect to model
training, collecting samples of the AUC statistic over 100 trials. The only difference here
is that we’re using a subset of the data with respect to the index values that fall below the
MSE threshold. When looking at the summary statistics, we observe the following:

Mean Std.Dev Min Max Range
0.8274664 0.03076285 0.75 0.9117647 0.1617647

When comparing the distribution of our results to the original model, we observe
a slightly higher mean, a higher max. However, we also observe a lower minimum.
Therefore, the range and standard deviation of our results increase. Let’s evaluate our
results when we only look at anomalies:

##
#Using only Anomalies in Data Set
train_data <- processedData[errorRate$Reconstruction.MSE >= 0.01,]

#Bayes Classifier
AUC <- c()
for (i in 1:100){
 rows <- sample(1:nrow(processedData), 92)
 �bayesClass2 <- naiveBayes(y = as.factor(second_date[rows]),
x = processedData[rows,], data = processedData)

 y_h <- predict(bayesClass2, processedData[rows,], type = c("class"))
 AUC <- append(roc(y_h, as.numeric(second_date[rows]))$auc, AUC)
}

#Summary Statistics
summaryStatistics(AUC)

When executing the preceding code, we see the following results:

Mean Std.Dev Min Max Range
0.8323727 0.03168166 0.7692308 0.9107143 0.1414835

Here we observe that this distribution contains the highest mean and minimum,
with moderate results with respect to range and standard deviation. When choosing
between the two data sets, I would argue for using the second subset in this instance
due to the superior AUC score performance on average—and given the fact that at a
minimum, we can still expect a higher score.

The importance of this technique lies in the fact that it is an effective method by
which you can fit superior models on subsets of data. This will be extremely handy if you
find you have a data set that is smaller than you would like. There are times when you can
find yourself stuck trying to tweak a model whose performance is slightly unsatisfactory,
despite using proper cross-validation techniques, data preprocessing techniques, and
parameter tuning techniques. In instances where this is due to lack of data, this technique

http://dx.doi.org/10.1007/978-1-4842-2734-3_10

Chapter 11 ■ Deep Learning and Other Example Problems

200

would be the first I tried to use prior to trying to acquire more data. As for the final step in
our experiment, let’s use the fitted models and see how they perform out of sample:

#Fitted Models and Out of Sample Performance
AUC1 <- AUC2 <- c()

for (i in 1:100){
 rows <- sample(1:nrow(processedData), 92)
 y_h1 <- predict(bayesClass1, processedData[-rows,], type = c("class"))
 y_h2 <- predict(bayesClass2, processedData[-rows,], type = c("class"))
 AUC1 <- append(roc(y_h1, as.numeric(second_date[-rows]))$auc, AUC1)
 AUC2 <- append(roc(y_h2, as.numeric(second_date[-rows]))$auc, AUC2)
}
summaryStatistics(AUC1)
summaryStatistics(AUC2)

When executing the preceding code, we see the results for the model fitted against
the subset without and with only anomalies respectively in Figures 11-4 and 11-5:

Mean Std.Dev Min Max Range
0.7890102 0.01468805 0.75 0.8194444 0.06944444
Mean Std.Dev Min Max Range
0.8303613 0.01506222 0.7957983 0.8688836 0.07308532

Figure 11-4.  ROC curve for Bayes model without anomalies (AUC : 0.7821)

Chapter 11 ■ Deep Learning and Other Example Problems

201

When reviewing the results from our experiment, it has become abundantly clear
that the second model, fitted with only anomalies, produces a markedly better model
than the model fit with observations that aren’t anomalies. But before we become entirely
convinced that we should use the second model, let’s quickly perform a two-sided
hypothesis test on using data from both of these models.

Being that we sampled our results 100 times, we can safely use a Z-test. As such, we
set the Z-test parameters as shown in the following code:

#Two Sided Hypothesis Test
require(BSDA)

z.test(x = AUC1, y = AUC2, alternative = "two.sided", mu = mean(AUC2) - mean(AUC1),
 conf.level = 0.99, sigma.x = sd(AUC1), sigma.y = sd(AUC2))

Figure 11-5.  ROC curve for Bayes model w/o anomalies (AUC: 0.8188)

Chapter 11 ■ Deep Learning and Other Example Problems

202

Statistically, within a 99% confidence interval, we have determined that the results of
the two models are statistically different from one another and therefore we can confidently
choose the second Bayesian model fitted, knowing that it is the superior model.

Convolutional Neural Networks
When I discussed CNNs in Chapter 5, I showed the power of this model by discussing the
MNIST digit recognition use case. Although that was at one point the primary use case
of CNNs, they are now currently being used for increasingly more difficult and complex
tasks. Now I’d like to explore a use case in which we’re trying to distinguish between
different objects of significantly more complexity than handwritten digits. In this tutorial,
we’ll be using the Caltech 101 dataset, which contains 101 object categories with between
60 and 800 images in each category. We’ll take various images from each category, doing
so in such a way that we get diversity of images without picking starkly different pictures.
We’ll be choosing between images of guitars and laptops. Sample of theses photos are
shown in Figures 11-7 and 11-8.

Figure 11-6.  Two-sided hypothesis test results

When executing the preceding function, it yields the output shown in Figure 11-6.

http://dx.doi.org/10.1007/978-1-4842-2734-3_5

Chapter 11 ■ Deep Learning and Other Example Problems

203

Figure 11-7.  Photo of guitar

Figure 11-8.  Photo of laptop

Chapter 11 ■ Deep Learning and Other Example Problems

204

Figure 11-9.  List of files from image directory

These images are pieces of technology, but they’re distinctly different from each
other in such a way that we would expect a human to be able to distinguish them. Let’s
now discuss how we should prepare our data for the CNNs.

Preprocessing
Working with image files requires a particular type of preprocessing that we haven’t
discussed in detail yet, mainly because image recognition and computer vision is a very
specific subfield of computer science. It would be wise to seek other texts to build upon
your understanding of computer vision, but this passage will give you a basic overview.
We’re working with color images, each with dimension x, y, z, where x and y are specific
to each photo but z is always 3. Image files, insofar as a computer understands them, are
three layers of matrices stacked on top of each other, with each pixel being an individual
entry in that matrix. For this task, I recommend you use the EBImage package so you can
grayscale and resize images. To help with the training time of the neural network, we’ll be
resizing images so they’re smaller, and therefore the neural network takes in less data. But
let’s walk through our preprocessing step by step:

#Loading required packages
require(mxnet)
require(EBImage)
require(jpeg)
require(pROC)

#Downloading the strings of the image files in each directory
guitar_photos <- list.files("/file/path/to/image")
laptop_photos <- list.files("/file/path/to/image")

The Caltech library is organized into directories with multiple levels, so be mindful
when trying to access these images in an automated fashion. All the directories for
each category have the same format for the filenames: the image file is denoted as
image_000,X, where X is the number of the image in the directory. But each directory
has a different number of files, so we should use the list.files() function to collect the
names of all the image files within the directories. We use them in the following section of
code. The contents of the guitar photos directory when using the list.files() function
are shown in a truncated form in Figure 11-9.

Chapter 11 ■ Deep Learning and Other Example Problems

205

Now that we have the names of the individual files, we can load them into the
img_data data frame using the following process:

#Creating Empty Data Frame
img_data <- data.frame()

#Turning Photos into Bitmaps
#Guitar Bitmaps
for (i in 1:length(bass_photos)){
 img <- readJPEG(paste("/path/to/image/directory/", guitar_photos[i], sep = ""))

We use the paste function here to combine the directory with the image with
the string such that it leads us to the data. Using the readJPEG() function from the
jpeg package, we can read the image into a bitmap, as described earlier as the stack of
matrices. Each dimension represents the three colors (red, blue, and green) that make
up every color photo. But to reduce the complexity of the images we’re working with,
we’re going to convert these images to greyscale (black and white). When working with
black and white images, we assign the pixel values a number between 0 and 1, with 0
representing black and 1 representing white. The colors in between determine the degree
of intensity toward either side of the spectrum a particular color:

#Reshape to 64x64 pixel size and grayscale image
img <- Image(img, dim = c(64, 64), color = "grayscale")

#Resizing Image to 28x28 Pixel Size
img <- resize(img, w = 28, h = 28)
img <- img@.Data

We perform the reshaping and resizing of various images using the resize()
function provided in EBImage. If you’re interested in viewing what images look like when
they’re grayscaled, feel free to experiment with the display() and Image() functions
accordingly. After the image is resized, we take the bitmap and convert it into a vector for
a better storage method. Finally, we must add a label to the vector of data for when we’re
creating and training a model. This will be useful when calculating the accuracy of our
model. Specifically, guitars will be labeled as 1 and laptops will be labeled as 2:

 #Transforming to vector
 img <- as.vector(t(img))

 #Adding Label
 label <- 1

 img <- c(label, img)

 #Appending to List
 img_data <- rbind(img_data, img)

}

Chapter 11 ■ Deep Learning and Other Example Problems

206

We repeat this process for the laptop images. If you want to use this structure of
preprocessing and model evaluation, feel free to do so—or experiment with alternative
preprocessing methods. Prior to creating the CNN model, we must ensure that the input
format for the model is correct. MXNet and many neural network models have specific
formats that you should be familiar with. The first step is to create a training and test
set. For this example, we’ll be splitting the data set such that we train against 75% of the
data and test against the remaining 25%. We now will transform the data such that it
was a matrix in which each row was a different image observation, with the label as the
first column entry and the bitmap values as the successive column entries. We’ll then
strip the label from the X matrix and use this as the values in the corresponding order
of observations for the y vector. We then perform cross-validation using the sample()
function:

#Transforming data into matrix for input into CNN
training_set <- data.matrix(img_data)

#Cross Validating Results
rows <- sample(1:nrow(training_set), nrow(training_set)*.75)

#Training Set
x_train <- t(training_set[rows, -1])
y_train <- training_set[rows, 1]
dim(x_train) <- c(28,28, 1, ncol(x_train))

In the preceding code, it’s important to point out a distinct detail that if omitted will
prevent you from being able to execute your code. The MXNet CNN model only takes
an X matrix that is 4 dimensions. Be sure to remember this—otherwise you’ll waste time
debugging this issue! We also alter the dimensions of the test set accordingly:

#Test Set
x_test <- t(training_set[-rows, -1])
y_test <- training_set[-rows, 1];
dim(x_test) <- c(28,28, 1, ncol(x_test))

Now that we’ve finished preprocessing our data, we can finally begin to build and
train our model.

Model Building and Training
CNN models are built in such a way that the data passes through each layer, but the only
layer that’s actually inputted to the FeedForward() function is the final layer. So we build
the model prior to it being activated here. Some packages might be more proprietary and
require less architecture, but MXNet allows for a significant degree of customization that
would be useful if you would like to construct different ConvNet structures, such as those
elaborated upon in Chapter 5. If you would like to improve upon the results here, that
may be a good use of your time.

http://dx.doi.org/10.1007/978-1-4842-2734-3_5

Chapter 11 ■ Deep Learning and Other Example Problems

207

Let’s move to the architecture. We’ll be using a generic LeNet architecture here,
as is the standard for image recognition tasks. As such, we organize the layers in the same
manner:

data <- mx.symbol.Variable('data')

#Layer 1
convolution_l1 <- mx.symbol.Convolution(data = data, kernel = c(5,5),
num_filter = 20)
tanh_l1 <- mx.symbol.Activation(data = convolution_l1, act_type = "tanh")
pooling_l1 <- mx.symbol.Pooling(data = tanh_l1, pool_type = "max", kernel =
c(2,2), stride = c(2,2))

#Layer 2
convolution_l2 <- mx.symbol.Convolution(data = pooling_l1, kernel = c(5,5),
num_filter = 20)
tanh_l2 <- mx.symbol.Activation(data = convolution_l2, act_type = "tanh")
pooling_l2 <- mx.symbol.Pooling(data = tanh_l2, pool_type = "max",
kernel = c(2,2), stride = c(2,2))

We first start by creating a dummy data variable that will be used to pass the x
matrix values in a file format friendly to the ConvNet here. data passes through each
layer, as discussed in Chapter 5, where the model builds from lower abstractions to
higher abstractions of the data to make a determination. Here, we will use a stride of 2
as generally recommended, 20 filters in the first Conv layer, and 50 filters in the second
Conv layer. As an activation function, we use tanh. This activation function will be held
constant throughout the entire model with the exception of the output function:

#Fully Connected 1
fl <- mx.symbol.Flatten(data = pooling_l2)
full_conn1 <- mx.symbol.FullyConnected(data = fl, num_hidden = 500)
tanh_l3 <- mx.symbol.Activation(data = full_conn1, act_type = "tanh")

#Fully Connected 2
full_conn2 <- mx.symbol.FullyConnected(data = tanh_l3, num_hidden = 40)

#Softmax Classification Layer
CNN <- mx.symbol.SoftmaxOutput(data = full_conn2)

The data continues to pass to the fully connected layers. Respectively, there are 500
and 40 hidden neurons in the fully connected layers. Finally, the data reaches the last
layer, where we have a softmax classifier to determine the class of the observations.

http://dx.doi.org/10.1007/978-1-4842-2734-3_5

Chapter 11 ■ Deep Learning and Other Example Problems

208

Before we make any predictions, though, we must train our parameters using
the method suggested in the previous section. When possible, particularly in the
case of neural networks, using a local search method for packages that support these
functionalities is highly recommended. Specifically, h2o supports a grid search function
to tune parameters. Although here we’re using MXNet, it’s useful for readers to be aware
of packages that do provide these functionalities.

Let’s begin by training the parameters:

#Learning Rate Parameter
AUC <- c()
learn_rate <- c(0.01, 0.02, 0.03, 0.04)
CPU <- mx.cpu()

for (i in 1:length(learn_rate)){
 �cnn_model <- mx.model.FeedForward.create(CNN, X = x_train,
y = y_train, ctx = CPU, num.round = 50, array.batch.size = 40,

learning.rate = learn_rate[i],
momentum = 0.9, eval.metric = mx.metric.accuracy,
epoch.end.callback = mx.callback.log.train.metric(100),
 optimizer = "sgd")
#Code redated partially, please check github!

Similar to other neural network models, the learning rate parameter determines the
magnitude of the gradient in updating the weights connecting the layers to each other. We
give an array and plot the AUC, with respect to the tuning parameter in Figure 11-10.

Chapter 11 ■ Deep Learning and Other Example Problems

209

We can clearly see that a learning rate of 0.04 here is the most optimal because it
yields the highest AUC score.

Let’s now train the momentum parameter:

AUC1 <- c()
mom <- c(0.5, 0.9, 1.5)
for (i in 1:length(mom)){
cnn_model <- mx.model.FeedForward.create(CNN, X = x_train, y = y_train, ctx
= CPU, num.round = 50, array.batch.size = 40, learning.rate = 0.04,
momentum = mom[i], eval.metric = mx.metric.accuracy,
epoch.end.callback = mx.callback.log.train.metric(100), optimizer = "sgd")
#Code redacted partially, please check github!

Figure 11-10.  AUC score over learning rate

Chapter 11 ■ Deep Learning and Other Example Problems

210

When we execute the preceding code, we receive the results shown in Figure 11-11.

Figure 11-11.  AUC over momentum value

When evaluating the results from the different parameters, we shall set the
momentum value as 0.9. Now that we’ve tuned these two parameters, we can start
training the tuned model in the final section and evaluating its performance on the test
and training set:

#Fitted Model Training
cnn_model <- mx.model.FeedForward.create(CNN, X = x_train, y = y_train, ctx
= CPU, num.round = 150, array.batch.size = 40,
learning.rate = 0.04, momentum = 0.9, eval.metric = mx.metric.accuracy,
initializer = mx.init.normal(0.01) , optimizer = "sgd")

#Calculating Training Set Accuracy
y_h <- predict(cnn_model, x_train)
Labels <- max.col(t(y_h)) - 1
roc(as.factor(y_train), as.numeric(Labels))
curve <- roc(as.factor(y_train), as.numeric(Labels))
#Code partially redacted, please check github!

Chapter 11 ■ Deep Learning and Other Example Problems

211

Before executing the code, I would like to point out one detail. Here, we have not
enabled GPU training. If you want to decrease training time and improve computational
performance, look into the necessary steps in the MXNet documentation to enable this
feature. For this example, we’ll be using CPU training. You should also be aware that
the temptation to increase the num.round parameter will often be strong, as this will
directly affect the accuracy of the model on the training set data. Beware that setting this
parameter too high will cause overfitting, particularly on a data set the size of the one
we’re using in this example. When executing the preceding code, the user should see the
terminal printing out the training accuracy in a format such as the following:

[184] Train-accuracy=0.708333333333333
[185] Train-accuracy=0.708333333333333
[186] Train-accuracy=0.708333333333333
[187] Train-accuracy=0.708333333333333
[188] Train-accuracy=0.708333333333333

The number on the left side of the words Train-accuracy represents the current
iteration, which will run until the number indicated in the num.round parameter. The
accuracy parameter used here is equivalent to the AUC score and is given by the
mx.metric.accuracy object. As always, learning rates are difficult to approximate, but we
can mitigate the loss of accuracy by adjusting the weights within the neural network using
the stochastic gradient descent optimizer. When executing the code, we yield Figure 11-12.

Chapter 11 ■ Deep Learning and Other Example Problems

212

This ROC plot has an AUC of 0.7706. When assessing the performance on the test
data, Figure 11-13 and results are yielded.

Figure 11-12.  ROC plot for CNN over training data

Chapter 11 ■ Deep Learning and Other Example Problems

213

The model when predicting against the test data has an AUC of 0.7063. Roughly
speaking, the performance here is considerably similar, although as expected we do notice
a drop-off in performance from the training to test set. That said, it’s unlikely even in this
instance that there is any indication of overfitting. However, you might still be inclined to
improve the performance of these models should you want to put something like this into
production. Ideally, when classifying images, we would like to have models that perform
with at least 90% accuracy. Although the image classification case here is rather benign,
there are cases in which incorrect classifications can lose considerable amounts of money
per observation or cause incorrect diagnoses that therefore cause patients to receive
improper care. With this in mind, how would you proceed from this point?

The most logical next step would be to acquire more data for the training phase of this
model. This is typically what we would consider the largest challenge of building sufficient
convolutional neural networks: getting enough training data. For many different commercial
products, acquisition of this data legally can prove an exhaustive task and in a worst-case
scenario would require acquisition of the data by the team itself in the real world. Readers
should be mindful of this when creating CNNs for specific tasks, because sometimes the
feasibility of the task is purely a matter of how accessible the data is. In this instance, the data
set we’re using is roughly only in total 170 photos, of which we train over 75%.

Figure 11-13.  ROC plot for CNN over test data

Chapter 11 ■ Deep Learning and Other Example Problems

214

Another suggestion you might want to take note of is using another network
architecture, or if you feel ambitious enough, trying to create your own. However, creating
your own network architecture can be an extremely daunting task. Another possible
avenue to explore is creating several convolutional neural networks. From these models,
we can create a data set where each feature is the output of a given CNN. This data
set could then be inputted into a traditional machine learning model. You should be
conscious, though, that these approaches might in an of themselves require significant
tuning of the approach outlined earlier.

Collaborative Filtering
For our final example, we’ll be briefly tackling the problem of recommendation systems
as was briefly addressed in prior chapters. Recommendation systems are constantly
evolving, but it’s useful to address the concept because of the application of data science
within them. It’s here that you’ll be introduced to the practical applications of imputation
in addition to some of the soft skills of data science such as data transformation that have
been briefly addressed but never walked through.

Recommendation systems are particular to e-commerce websites like Amazon.
com but are also present in content-based sites such as Netflix. The motivation is fairly
straightforward in that it is reasonable to recommend products to customers that they
would reasonably like. The task of doing so is more difficult than it seems, though. Most
users don’t use the entirety of all products offered by a given company. Even if they did,
it doesn’t mean they would rate every single product they used. That leaves us with the
problem of having a matrix that is sparsely populated with values. Nevertheless, we’ve
reviewed techniques to handle this and will be moving on to inspecting our data set.

For this experiment, we’ll be using the third Jester data set (http://goldberg.
berkeley.edu/jester-data/). The features all represent individual jokes, and the rows
represent users. Each entry within the matrix is a rating for a joke, where the lower bound
is –10 and the upper bound is 10. However, whenever there isn’t an entry for a joke, this is
represented by a 99. When inspecting the head of the data set, we see the matrix shown in
Figure 11-14.

Figure 11-14.  Snapshot of the Jester data set

http://goldberg.berkeley.edu/jester-data/
http://goldberg.berkeley.edu/jester-data/

Chapter 11 ■ Deep Learning and Other Example Problems

215

The goal here will be to measure the similarity of different users’ tastes based on
the similarities between the jokes themselves. To do this, we’ll be calculating the cosine
similarity between column vectors. Briefly, let’s discuss the concept of cosine similarity
before speaking about combining matrix factorization and RBMs to impute missing
values. When working with problems in which you’re trying to compare vectors, cosine
similarity is a concept that will often be referenced. Intuitively, we define cosine similarity
as the degree to which two non-zero vectors are distinct. Mathematically, we define
cosine similarity with the following equation

similarity = () = ∗
cos θ A B

A B
2 2

where A, B = two distinct vectors.
Similarly to a correlation coefficient, cosine similarity values range from –1 to 1. A

cosine similarity of 1 indicates that values are exactly the same, whereas –1 means they
are exactly opposite. A value of zero indicates no relationship between vectors at all. With
this in mind, we’ll compare the consumption patterns of certain music with one another
such that we can compare which items are most like each other and therefore should be
recommended to other individuals.

However, for those who paid close attention, cosine similarity is used with two
non-zero vectors—meaning we have to generate values for our dataset where they
are missing. There are many techniques that have been discussed for imputation, but
one that has been described as useful by Geoffrey Hinton in this instance is matrix
factorization. Specifically, I suggest you use singular value decomposition (SVD).

SVD and PCA, discussed elsewhere in this book, are highly related techniques. They
both are perform eigendecompositions of a matrix, but SVDs applications differ from that
of PCA. Particularly, SVD can be used to approximate the missing values. As such, let’s
impute our values using the impute.svd() function:

require(lsa)
require(bcv)
require(gdata)
require(Matrix)

#Upload the data set
#Please be patient this may take a handful of seconds to load.
data <- read.xls("/path/to/data/.xls", sheet = 1)
colnames(data) <- seq(1, ncol(data), 1)

#Converting 99s to NA Values (1)
data[data == 99] <- NA

#Converting 99s to Mean Column Values (2)
for (i in 1:ncol(data)){
 data[is.na(data[,i]), i] <- mean(data[,i], na.rm = TRUE)
}

Chapter 11 ■ Deep Learning and Other Example Problems

216

We begin by converting the 99s (1) to NA values and then changing the NA values to
the column means (2). After this point, we can move forward and impute the values:

#Imputing Data via SVD
newData <- impute.svd(data, k = qr(data)$rank, tol = 1e-4, maxiter = 200)
print(newData$rss)
head(data[, 2:10])

Be aware that the impute.svd() function requires that you impute either column
means for the missing values, or if an entire column’s observations are missing to make it 0.
If you don’t follow these instructions, you’ll receive incorrect results. When executing the
preceding code, we yield the outputs shown in Figure 11-15.

Figure 11-15.  Head of imputed data set

When executing the SVD, we also calculated a sum of squares of 4.398197e-20 with
respect to the non-missing values and the predictions of these non-missing values.
Readers who feel inclined to challenge themselves here can, instead of using SVD impute
the values, use an RBM. Be aware, though, that this task can be extremely computationally
expensive, and the modification of the RBM for this task is not easy. Look for high-level
overviews given by Geoffrey Hinton on this topic (http://www.machinelearning.org/
proceedings/icml2007/papers/407.pdf).

We can now calculate the cosine distances between the columns:

itemData <- matrix(NA, nrow = ncol(data), ncol = 11,
 dimnames=list(colnames(data)))
#Getting Cosine Distances
for (i in 1:nrow(itemData)){
 for (j in 1:ncol(itemData)){
 itemData[i,j] <- cosine(data[,i], data[,j])
 }
}

http://www.machinelearning.org/proceedings/icml2007/papers/407.pdf
http://www.machinelearning.org/proceedings/icml2007/papers/407.pdf

Chapter 11 ■ Deep Learning and Other Example Problems

217

When executing the preceding code, we yield the data set shown in Figure 11-16.

Figure 11-17.  Top 10 recommendations for 11 separate jokes

Figure 11-16.  Head of the cosine distance data set

From this data set, we can now perform the final data transformation such that each
row represents a particular joke and each column represents the jokes most similar in
descending order from left to right. We do this initially by instantiating an empty
matrix with the proper dimensions (1). After this matrix is instantiated, we can then fill
in the data by sorting the cosine values and taking the indices that contain the top 11
values—we take the top 11 because the number 1 value will always be the same item itself:

#Creating Matrix for ranking similarities (1)
similarMat <- matrix(NA, nrow = ncol(itemData), ncol = 11)

#Sorting Data Within Item Data Matrix (2)
for(i in 1:ncol(itemData)) {
 rows <- order(itemData[,i], decreasing = TRUE)
 similarMat[i,] <- (t(head(n=11, rownames(data[rows ,][i]))))
}

#Printing Result
similarMat

When executing the preceding code, we reach our final answer, shown in Figure 11-17.

Chapter 11 ■ Deep Learning and Other Example Problems

218

We interpret the result as yielding the top 10 recommendations for 11 separate
jokes. You can implement this in a platform such that on a web page, users receive
recommendations for different pages, products, and or similar entities.

Summary
We now have reached the end of this chapter and our review of deep learning and
machine learning techniques entirely. Chapter 12 provides brief advice that all data
scientists should be aware of as they move forward in their research or professional
endeavors.

http://dx.doi.org/10.1007/978-1-4842-2734-3_12

219© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_12

CHAPTER 12

Closing Statements

We have reached the end of this book. By now, you should feel comfortable that you’ve
acquired a general overview of data science, machine learning, and deep learning. If
not, you should at least be adequately aware of where you need to focus your efforts in
reviewing and further research. The purpose of this book is not intended to make anyone
an expert. Rather it should be used to highlight the respective power of these techniques
in a given field. I would like to end by imparting advice for all readers with my thoughts
on the best way to use these models and the general methodology of machine learning.

In every field, there are idiosyncratic characteristics that have long been studied.
This is generally what I would describe as the science of X, where X is a given field we’re
discussing. Sometimes specific quantitative subfields have been developed within the
broader field to tackle these goals. Given the complex nature of the world, it can’t be
overemphasized that studying the broader field and the specific subfield you’re interested
holistically is a requirement before you seek to implement machine learning methods to
problem solving. Among the complaints I have heard from many colleagues and friends
is that there is one overwhelming deficiency that many data scientists often have: domain
knowledge. Machine learning and deep learning algorithms have gotten very good at
performing in a variety of contexts and increasingly have been able to produce robust
solutions. however, using a good tool poorly in a given context can produce results just as
bad, if not worse, as using the wrong tool poorly in a given context.

You should be sure that you deeply understand the algorithms you choose prior to
implementing them at scale. There is seldom anything worse than providing a solution,
seeing the process for it fail, and being unable to provide counsel on how to fix it. Beyond
something bad happening, often you’ll be expected to discuss these algorithms with
people who have less technical backgrounds. Although I have emphasized this in prior
chapters, I must again state the power of good visualizations and succinct explanations.
Although you might find intricate detail compelling, the average person doesn’t have
the time that you have spent educating yourself on this topic. So, only make things as
complicated as they need to be.

Finally, I urge you when producing your own solutions to be as creative as possible.
The proliferation of machine learning algorithms is exciting for the way in which it
revolutionizes our world, but it will also lead to great homogeneity among products
if these algorithms aren’t used in a unique way. The process of solving problems,

Chapter 12 ■ Closing Statements

220

while frustrating at times, should be challenging and exciting also. This should be an
opportunity to use your ingenuity to create a unique solution—not use old and tired
solutions. Reusing large portions of code, though tempting and often necessary to save
time in the development stage, should be avoided as much as possible as well. Always
force yourself to approach a problem from scratch, because that will inspire new and
hopefully better solutions.

I wish all readers the best of success moving forward in their respective studies
and careers, and also in life. Machine learning is one of the most frustrating concepts I
have ever encountered, but through studying it I’ve learned an incredible amount about
computer science and myself while also being introduced to an immense amount of
incredibly intelligent individuals. I hope that the joy that has been brought into my life
from studying this field is similarly brought to yours Godspeed.

Sincerely,
Taweh Beysolow II

221© Taweh Beysolow II 2017
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3

�       � A
A/B testing, 148

beta-binomial hierarchical model
for, 149, 151

simple two-sample, 149
Activation function, 3
Additive law of probability, 13
Akaike information criterion

(AIC), 152
AlexNet, 110
Amazon Web Services (AWS), 167
Analysis of Variance (ANOVA), 137

MANOVA, 138
mixed-design, 138
one-way, 137
two-way (multiple-way), 137

Ant colony optimization
(ACO), 159–160

Arithmetic mean, 15
Asset price prediction, 171–172

description of experiment, 173–175
feature selection, 175–176
supervised learning, 172–173

Associative property, 19
Autoencoders, 125–126,

195–199, 201–202
linear autoencoders vs.

PCA, 126–127
Axioms, 19

associative property, 19
commutative property, 19
distributivity of scalar

multiplication, 20
identity element of addition, 19
identity element of scalar

multiplication, 20
inverse elements of addition, 19

�       � B
Back-propagation algorithm, 95–97, 107
Back-propagation through time

(BPPT), 114–115
Backward selection, 151
Batch learning, 131
Bayesian classifier, 191–193, 196
Bayesian learning, 83

50/25/25 cross-validation, 85–86
limitation, 84
Naïve Bayes classifier, 84
tuning machine learning

algorithms, 85
Bayesian statistics, 149
Bayes information criterion (BIC), 152
Bayes’ theorem, 14
Beta-binomial hierarchical model, 149, 151
Beta distribution, 150
Bi-infinite sequence, 40
Binary classifier, 66
Binomial distribution, 150, 151
Blocking process, 145
BPTT. See Back-propagation through

time (BPTT)

�       � C
Canonical correlation analysis (CCA), 156
Central processing unit (CPU), 168, 169
Coefficient of determination

(R squared), 17
Collaborative filtering, 214–218
Commutative property, 19
Complex cells, 101
Confusion matrix, 68–69

for Bayesian classifier, 85
for classification tree, 80

Index

■ INDEX

222

Conjugate distribution, 150
Conjugate gradient algorithms, 98, 119
Continuous random variables, 14
Contrasting divergence (CD)

learning, 129–131
Convergent sequence, 41
Convolutional layer

convolving, 104
feature maps, 104
filtering, 104

Convolutional neural networks
(CNNs), 5, 108, 202, 204

AlexNet, 110
convolutional layer, 103–104
depth, 108
FC layer, 106
GoogLeNet, 109
history, 101
loss layer, 107
pooling layer, 105
preprocessing, 204–206
regularization, 111
ReLU layer, 106
ResNet, 110
structure and properties, 101–103
tuning parameters, 108
VGGnet, 110

Convolving, 104
Cook’s distance, 142
Correlation coefficients, 16
Correlation matrix, 175
Cosine similarity, 215

�       � D
Data science, 219
Decision tree learning, 78

classification trees, 79–80
limitations, 81
regression trees, 80–81

Deep belief network (DBN), 6, 134–135
Deep learning, 219

autoencoders, 195–199, 201–202
CNNs, 202, 204

preprocessing, 204–206
model building and training, 206–214

collaborative filtering, 214–218
models, 3

applied machine learning and, 7
CNNs, 5
DBNs, 6

experimental design, 7
feature selection, 7
history, 8
MLP, 4
restricted Boltzmann machines, 6
RNNs, 5
SLP, 3–4
structure of, 2

Deep neural networks, 2
Derivatives and differentiability, 42
Diagonal matrix, 22
Discrete random variables, 14
Discriminant, 43
Distributional prediction, 79
DropConnect, 111
DropOut, 111

�       � E
Eigenvalues, 34–36
Eigenvectors, 34–36
Elman neural networks, 115
Embedded algorithms,157. See also

Wrappers, Filters, and
Embedded (WFE) algorithms

Ensemble methods, 82
gradient boosting algorithm, 82–83
random forest, 83

limitations, 83
Euclidean function

Euclidean loss, 107
softmax loss function, 107
softmax normalization, 107

Euclidean norm, 29
Expectation maximization (EM)

algorithm, 76
expectation step, 77
maximization step, 77–78

�       � F
Factor analysis, 154–155

limitations, 155
Factor loadings, 155
Fast learning algorithm, 135

steps, 136
Feature maps, 104
Feature/variable selection

techniques, 151
backwards and forward

selection, 151–152

■ INDEX

223

factor analysis, 154–155
limitations, 155

PCA, 152–154
FeedForward() function, 206
Fisher’s principles, 144–145
Fixed tabu search, 163–164
F-statistic and F-distribution, 138–145
Full factorial, 147
Fully connected (FC) layer, 102, 106
Fully recurrent networks, 113–114

�       � G
Genetic algorithms (GAs), 158
Geometric mean, 15
Gibbs sampling, 129, 135
Global minimizers, 47–48
Global optimum, 95
Google Finance API, 172
GoogLeNet, 109
Gradient, 42
Gradient boosting algorithm, 82–83
Gradient descent algorithm, 53–54
Graphics processing unit (GPU), 168

�       � H
Hadamard matrix, 146
Halton, Faure, and Sobol sequences, 148
Hamming distance, 164
Handling categorical data, 155

categorical label problems, 156
CCA, 156
encoding factor levels, 156

Hard drive disk (HDD), 167
Hardware and software suggestions

CPU, 169
GPU, 168
motherboard, 169
optimizing machine learning

software, 170
processing data with standard

hardware, 167
PSU, 170
RAM, 169
solid state drive and HDD, 167

Having memory, 113, 116
Hessian-free optimization, 48
Hessian matrix, 43, 49
Hidden layers, 99
Hill climbing search methods, 158

�       � I
Identity matrix, 22
ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC), 109–110
Inception architecture, 109
Instantaneous algorithm, 90
Intelligent optimization, 161
Interpretation, 145

�       � J
Jacobian matrix, 49

�       � K
Kernels, 72
K-means clustering, 74, 156

limitations, 75–76
K-nearest neighbors (KNN), 165, 189–191

�       � L
Learning rate, 54–55, 209

choosing, 55–56, 58–60
Levenberg-Marquardt heuristic, 61
Newton’s method, 60–61

Least Absolute Shrinkage and Selection
Operator (LASSO), 63

ridge regression and, 64
LeNet, 108
Levenberg-Marquardt (LM) algorithm, 61
Leverage, 142
Linear algebra, 17

axioms, 19
associative property, 19
commutative property, 19
distributivity of scalar

multiplication, 20
identity element of addition, 19
identity element of scalar

multiplication, 20
inverse elements of addition, 19

matrices, 20
addition, 21
column vector and square

matrix, 24
derivatives and

differentiability, 42
distributive over matrix

addition, 27

■ INDEX

224

eigenvalues and
eigenvectors, 34–36

Euclidean norm, 29
Hessian, 43
hyperplanes, 39–40
inner products, 32
L1 norm, 29–30
L2 norm, 29
limits, 41
linear transformations, 36–37
matrix by matrix

multiplication, 23
multiplication, 22
multiplication properties, 26
norms, 29, 31
norms on inner product

spaces, 32–33
nullspace, 39
orthogonality, 34
orthogonal projections, 38
outer product, 34
partial derivatives and

gradients, 42
P-norm, 30–31
proofs, 33–34
properties, 21
quadratic forms, 37
range, 38
rectangular, 26
row and column vector

multiplication, 24
row vector, square matrix, and

column vector, 25
scalar multiplication, 21, 23, 27
sequences, 40
sequences, properties, 40
square, 25
Sylvester’s criterion, 37–38
trace, 28
transpose, 28
transposition, 21
types, 21–22

scalars and vectors, 17
subspaces, 20
vectors, properties, 18

addition, 18
element wise multiplication, 19
subtraction, 18

Linear autoencoders vs. PCA, 126–127
Linear regression, 51

gradient descent algorithm, 53–54
learning rate, 54–55
multiple linear regression via gradient

descent, 54
OLS, 51–53

Linear transformation, 36–37
Local minimizers, 47

conditions for, 48–49
Local search methods, 157

ACO, 159–160
genetic algorithms (GAs), 158
hill climbing, 158
simulated annealing (SA), 159
VNS, 160–161

Logistic function, 66
Logistic regression, 66–67, 186–189

limitations, 69–70
Long short-term memory (LSTM)

applications, 117
distinguishing factor, 117
forget gate, 117
overview, 116
traditional, 118
training, 118
visualization, 117

Loss layer, 107

�       � M
Machine learning, 1, 50, 219

algorithms, 51
asset price prediction, 171–172

description of experiment, 173–175
feature selection, 175–176
supervised learning, 172–173

feature selection, 185–186
history, 50
model evaluation, 176

ridge regression, 176–178
SVR, 178–180

model training and evaluation, 186
Bayesian classifier, 191–193
KNN, 189–191
logistic regression, 186–189

proliferation, 219
speed dating, 180

classification, 181–182
data cleaning and

imputation, 182–185
unsupervised learning, 74

assignment step, 74

Linear algebra(cont.)

■ INDEX

225

K-means clustering, 74
K-means clustering,

limitations, 75–76
update step, 75

Markov process, 87
Matrices, 20

addition, 21
column vector and square matrix, 24
derivatives and differentiability, 42
distributive over matrix addition, 27
eigenvalues and eigenvectors, 34–36
Euclidean norm, 29
Hessian, 43
hyperplanes, 39–40
inner products, 32
L1 norm, 29–30
L2 norm, 29
limits, 41
linear transformations, 36–37
matrix by matrix multiplication, 23
multiplication, 22
multiplication properties, 26
norms, 29, 31
norms on inner product spaces, 32–33
nullspace, 39
orthogonality, 34
orthogonal projections, 38
outer product, 34
partial derivatives and gradients, 42
P-norm, 30–31
proofs, 33–34
properties, 21
quadratic forms, 37
range, 38
rectangular, 26
row and column vector

multiplication, 24
row vector, square matrix, and column

vector, 25
scalar multiplication, 21, 23, 27
sequences, 40

properties, 40
square, 25
Sylvester’s criterion, 37–38
trace, 28
transpose, 21, 28
types, 21–22

Mean squared error (MSE), 17, 65
Mixed-design ANOVA, 138
mlp() function, 100

MLP. See Multilayer perceptron (MLP)
model

Momentum within RBMs, 132
Motherboard, 169
Multicollinearity, 62

confusion matrix, 68–69
logistic regression, 69–70
regression models, 64–67
ridge regression, 62–64
ROC curve, 67–68
SVM, 70–73
testing, 62
VIF, 62

Multilayer perceptron (MLP) model, 4
back-propagation algorithm, 95–97
considerations, 97–99
distinguishing factor from SLPs, 94
global optimum, 95
limitations, 97–99

Multiple linear regression via gradient
descent, 54

Multiplicative law of probability, 13
Multivariate ANOVA (MANOVA), 138
Mxnet, 99

�       � N
Naïve Bayes classifier, 84
Neighborhoods, concept, 49

interior and boundary points, 50
Netflix, 214
Neural history compressor, 116
Newton’s method, 60–61
Non-parametric bootstrapping, 81
Norms, 29
Null hypothesis, 145

�       � O
One-way ANOVA, 137
Online learning, 131
Optimization, 45

unconstrained, 45–46
global minimizers, 47–48
local minimizers, 47
local minimizers,

conditions, 48–49
Ordinary least squares (OLS), 51–53
Orthogonality, 34
Orthogonal projections, 38

■ INDEX

226

�       � P
Parameter tuning, 173
Partial derivative, 42
Perceptron model, training, 90
Plackett-Burman designs, 146
Point prediction, 79
Pooling layer, 105
Positive semi-definite matrix, 22
Posterior distribution, 149
Power supply unit (PSU), 170
Principal components, 152
Principal components analysis

(PCA), 36, 126–127, 152–154, 176
Prior distribution, 149
Probability, 11–12
Probability theory, 86
Pseudo-random numbers, 148

�       � Q
Quadratic forms, 37
Quantitative finance, 171

�       � R
Random access memory (RAM), 169
Random forest, 83

limitations, 83
Randomization, 145
Random sampling, 14
Random variables, 14–15
Reactive search optimization (RSO), 161

fixed tabu search, 163–164
KNN, 165
reactive prohibitions, 162–163
RTS, 164
WalkSAT algorithm, 165

Reactive tabu search (RTS), 164
Receiver Operating Characteristic

(ROC) curve, 67–68
Rectangular matrices, 26
Rectified linear units (ReLU) layer, 106
Recurrent neural networks (RNNs), 5

architecture, 114
BPPT, 114–115
Elman, 115
example, 120–124
fully, 113–114
LSTM, 116–118
neural history compressor, 116

parameter update algorithm, 119–120
structural damping within, 119

Regression, 172–173
Regression models, 51

evaluating, 64–65
classification, 65
coefficient of determination, 65
logistic regression, 66–67
MSE, 65
SE, 65

linear regression, 51
gradient descent algorithm, 53–54
learning rate, 54–55
multiple linear regression via

gradient descent, 54
OLS, 51–53

Regularization
DropConnect, 111
DropOut, 111
L1 and L2, 111
negative effect, 111
stochastic pooling, 111

Reinforcement learning, 86–87
Relief algorithm, 157
ResNet, 110
Restricted Boltzmann machines

(RBMs), 6, 125, 127
energy function, 127
Hopfield networks, 128
implementations, 129
individual activation probabilities, 129
momentum within, 132
probability distributions, 128
standard, 127
visualization, 135

Ridge regression, 62, 63, 176–178
and LASSO, 64

Robust tabu search, 163

�       � S
Simple cells, 101
Simulated annealing (SA), 159
Single layer perceptron (SLP) model, 3–4

activation function, 90
architecture, 89
distinguishing factor from MLP, 95
limitations, 91–93
perceptron model, 90
statistics, 94
WH algorithm, 90

■ INDEX

227

Singular value decomposition
(SVD), 215–216

SLP. See Single layer perceptron
(SLP) model

Solid state drives, 168
Space filling, 147
Sparsity, 133
Speed dating, 180

classification, 181–182
data cleaning and imputation, 182–185

Standard deviation, 16
Standard error (SE), 65
Statement of experiment, 144
Statistical concepts, 11

and vs. or, 12–13
Bayes’ theorem, 14
coefficient of determination

(R squared), 17
MSE, 17
probability, 11–12
random variables, 14–15
standard deviation, 16
variance, 15

Statistical replication, 145
Stochastic pooling, 111
Stride, 108
Structural damping, 119
Subspaces, 20
Supervised learning, 50

regression, 172–173
Support vector machine (SVM), 70–72

extensions, 73
kernels, 72
limitations, 73
sub-gradient method applied to, 72

Support vector regression (SVR), 178–180
Sylvester’s criterion, 37–38

�       � T
Test of significance, 145
Transposition, 18

Two-way infinite sequence, 40
Two-way (multiple-way) ANOVA, 137

�       � U
Unconstrained optimization, 45–46

global minimizers, 47–48
local minimizer, conditions, 48–49
local minimizers, 47

Unsupervised learning, 74
assignment step, 74
K-means clustering, 74

limitations, 75–76
update step, 75

�       � V
Vanishing gradient, 116
Variable neighborhood search

(VNS), 160–161
Variance, 15
Variance inflation factor (VIF), 62
VGGnet, 110

�       � W, X
Wake-sleep algorithm, 8
WalkSAT algorithm, 165
Weight decay, 133
Widrow-Hoff (WH) algorithm, 90
Wrappers, Filters, and Embedded

(WFE) algorithms, 157
relief algorithm, 157

�       � Y
Yahoo! Finance API, 172

�       � Z
Zero-padding, 108

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Deep Learning
	Deep Learning Models
	Single Layer Perceptron Model (SLP)
	Multilayer Perceptron Model (MLP)
	Convolutional Neural Networks (CNNs)
	Recurrent Neural Networks (RNNs)
	Restricted Boltzmann Machines (RBMs)
	Deep Belief Networks (DBNs)

	Other Topics Discussed
	Experimental Design
	Feature Selection
	Applied Machine Learning and Deep Learning
	History of Deep Learning

	Summary

	Chapter 2: Mathematical Review
	Statistical Concepts
	Probability
	And vs. Or
	Bayes’ Theorem
	Random Variables
	Variance
	Standard Deviation
	Coefficient of Determination (R Squared)
	Mean Squared Error (MSE)

	Linear Algebra
	Scalars and Vectors
	Properties of Vectors
	Addition
	Subtraction
	Element Wise Multiplication

	Axioms
	Associative Property
	Commutative Property
	Identity Element of Addition
	Inverse Elements of Addition
	Identity Element of Scalar Multiplication
	Distributivity of Scalar Multiplication with Respect to Vector Addition
	Distributivity of Scalar Multiplication with Respect to Field Addition

	Subspaces
	Matrices
	Matrix Properties
	Addition
	Scalar Multiplication
	Transposition
	Types of Matrices
	Matrix Multiplication
	Scalar Multiplication
	Matrix by Matrix Multiplication
	Row and Column Vector Multiplication
	Column Vector and Square Matrix
	Square Matrices
	Row Vector, Square Matrix, and Column Vector
	Rectangular Matrices
	Matrix Multiplication Properties (Two Matrices)
	Not Commutative
	Distributive over Matrix Addition
	Scalar Multiplication Is Compatible with Matrix Multiplication
	Transpose
	Trace
	Norms
	Euclidean Norm
	L2 Norm
	L1 Norm
	P-norm
	Matrix Norms
	Inner Products
	Norms on Inner Product Spaces
	Proofs
	Orthogonality
	Outer Product
	Eigenvalues and Eigenvectors
	Linear Transformations
	Quadratic Forms
	Sylvester’s Criterion
	Orthogonal Projections
	Range of a Matrix
	Nullspace of a Matrix
	Hyperplanes
	Sequences
	Properties of Sequences
	Limits
	Derivatives and Differentiability
	Partial Derivatives and Gradients
	Hessian Matrix

	Summary

	Chapter 3: A Review of Optimization and Machine Learning
	Unconstrained Optimization
	Local Minimizers
	Global Minimizers
	Conditions for Local Minimizers

	Neighborhoods
	Interior and Boundary Points

	Machine Learning Methods: Supervised Learning
	History of Machine Learning
	What Is an Algorithm?

	Regression Models
	Linear Regression
	Ordinary Least Squares (OLS)
	Gradient Descent Algorithm
	Multiple Linear Regression via Gradient Descent
	Learning Rates

	Choosing An Appropriate Learning Rate
	Newton’s Method
	Levenberg-Marquardt Heuristic

	What Is Multicollinearity?
	Testing for Multicollinearity
	Variance Inflation Factor (VIF)
	Ridge Regression
	Least Absolute Shrinkage and Selection Operator (LASSO)
	Comparing Ridge Regression and LASSO
	Evaluating Regression Models
	Coefficient of Determination (R 2)
	Mean Squared Error (MSE)
	Standard Error (SE)
	Classification
	Logistic Regression

	Receiver Operating Characteristic (ROC) Curve
	Confusion Matrix
	Limitations to Logistic Regression
	Support Vector Machine (SVM)
	Types of Kernels

	Sub-Gradient Method Applied to SVMs
	Extensions of Support Vector Machines
	Limitations Associated with SVMs

	Machine Learning Methods: Unsupervised Learning
	K-Means Clustering
	Assignment Step
	Update Step
	Limitations of K-Means Clustering

	Expectation Maximization (EM) Algorithm
	Expectation Step
	Maximization Step
	Limitations to Expectation Maximization Algorithm

	Decision Tree Learning
	Classification Trees
	Regression Trees
	Limitations of Decision Trees

	Ensemble Methods and Other Heuristics
	Gradient Boosting
	Gradient Boosting Algorithm
	Random Forest
	Limitations to Random Forests

	Bayesian Learning
	Naïve Bayes Classifier
	Limitations Associated with Bayesian Classifiers
	Final Comments on Tuning Machine Learning Algorithms
	50/25/25 Cross-Validation
	Tune One Parameter at a Time
	Using Search Algorithms to Tune Machine Learning Parameters

	Reinforcement Learning
	Summary

	Chapter 4: Single and Multilayer Perceptron Models
	Single Layer Perceptron (SLP) Model
	Training the Perceptron Model
	Widrow-Hoff (WH) Algorithm
	Limitations of Single Perceptron Models
	Summary Statistics

	Multi-Layer Perceptron (MLP) Model
	Converging upon a Global Optimum
	Back-propagation Algorithm for MLP Models:
	Limitations and Considerations for MLP Models
	How Many Hidden Layers to Use and How Many Neurons Are in It

	Summary

	Chapter 5: Convolutional Neural Networks (CNNs)
	Structure and Properties of CNNs
	Components of CNN Architectures
	Convolutional Layer
	Pooling Layer
	Rectified Linear Units (ReLU) Layer
	Fully Connected (FC) Layer
	Loss Layer

	Tuning Parameters
	Notable CNN Architectures
	Regularization
	Summary

	Chapter 6: Recurrent Neural Networks (RNNs)
	Fully Recurrent Networks
	Training RNNs with Back-Propagation Through Time (BPPT)
	Elman Neural Networks
	Neural History Compressor
	Long Short-Term Memory (LSTM)
	Traditional LSTM
	Training LSTMs
	Structural Damping Within RNNs
	Tuning Parameter Update Algorithm
	Practical Example of RNN: Pattern Detection
	Summary

	Chapter 7: Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks
	Autoencoders
	Linear Autoencoders vs. Principal Components Analysis (PCA)
	Restricted Boltzmann Machines
	Contrastive Divergence (CD) Learning
	Momentum Within RBMs
	Weight Decay
	Sparsity
	No. and Type Hidden Units

	Deep Belief Networks (DBNs)
	Fast Learning Algorithm (Hinton and Osindero 2006)
	Algorithm Steps

	Summary

	Chapter 8: Experimental Design and Heuristics
	Analysis of Variance (ANOVA)
	One-Way ANOVA
	Two-Way (Multiple-Way) ANOVA
	Mixed-Design ANOVA
	Multivariate ANOVA (MANOVA)

	F-Statistic and F-Distribution
	Fisher’s Principles

	Plackett-Burman Designs
	Space Filling
	Full Factorial
	Halton, Faure, and Sobol Sequences
	A/B Testing
	Simple Two-Sample A/B Test
	Beta-Binomial Hierarchical Model for A/B Testing

	Feature/ Variable Selection Techniques
	Backwards and Forward Selection
	Principal Component Analysis (PCA)
	Factor Analysis
	Limitations of Factor Analysis

	Handling Categorical Data
	Encoding Factor Levels
	Categorical Label Problems: Too Numerous Levels
	Canonical Correlation Analysis (CCA)

	Wrappers, Filters, and Embedded (WFE) Algorithms
	Relief Algorithm
	Algorithm

	Other Local Search Methods
	Hill Climbing Search Methods
	Genetic Algorithms (GAs)
	Algorithm

	Simulated Annealing (SA)
	Algorithm

	Ant Colony Optimization (ACO)
	Algorithm

	Variable Neighborhood Search (VNS)
	Algorithm

	Reactive Search Optimization (RSO)
	Reactive Prohibitions
	Fixed Tabu Search
	Reactive Tabu Search (RTS)
	WalkSAT Algorithm
	K-Nearest Neighbors (KNN)

	Summary

	Chapter 9: Hardware and Software Suggestions
	Processing Data with Standard Hardware
	Solid State Drives and Hard Drive Disks (HDD)
	Graphics Processing Unit (GPU)
	Central Processing Unit (CPU)
	Random Access Memory (RAM)
	Motherboard
	Power Supply Unit (PSU)
	Optimizing Machine Learning Software
	Summary

	Chapter 10: Machine Learning Example Problems
	Problem 1: Asset Price Prediction
	Problem Type: Supervised Learning—Regression
	Description of the Experiment
	Feature Selection

	Model Evaluation
	Ridge Regression
	Support Vector Regression (SVR)
	Problem 2: Speed Dating
	Problem Type: Classification
	Preprocessing: Data Cleaning and Imputation

	Feature Selection
	Model Training and Evaluation
	Method 1: Logistic Regression
	Method 3: K-Nearest Neighbors (KNN)
	Method 2: Bayesian Classifier

	Summary

	Chapter 11: Deep Learning and Other Example Problems
	Autoencoders
	Convolutional Neural Networks
	Preprocessing

	Model Building and Training
	Collaborative Filtering

	Summary

	Chapter 12: Closing Statements
	Index

